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Abstract: Micro elastofluidics is a transformative branch of microfluidics, leveraging the fluid–struc-
ture interaction (FSI) at the microscale to enhance the functionality and efficiency of various micro-
devices. This review paper elucidates the critical role of advanced computational FSI methods in the 
field of micro elastofluidics. By focusing on the interplay between fluid mechanics and structural 
responses, these computational methods facilitate the intricate design and optimisation of microde-
vices such as microvalves, micropumps, and micromixers, which rely on the precise control of flu-
idic and structural dynamics. In addition, these computational tools extend to the development of 
biomedical devices, enabling precise particle manipulation and enhancing therapeutic outcomes in 
cardiovascular applications. Furthermore, this paper addresses the current challenges in computa-
tional FSI and highlights the necessity for further development of tools to tackle complex, time-
dependent models under microfluidic environments and varying conditions. Our review highlights 
the expanding potential of FSI in micro elastofluidics, offering a roadmap for future research and 
development in this promising area. 

Keywords: micro elastofluidics; fluid–structure interaction; computational methods; microdevices; 
cardiovascular modelling 
 

1. Introduction 
Microfluidics, encompassing the manipulation and control of fluids within networks 

of channels with typical dimensions ranging from 0.1 µm to 100 µm, offers distinct ad-
vantages compared to traditional laboratory-scale techniques. The square-cube law im-
plies that as device dimensions decrease, heat and mass transfer in a microfluidic device 
can be significantly improved. Microfluidic devices also facilitate faster and more efficient 
separation processes. Their high surface-to-volume ratio facilitates rapid modifications in 
fluid dynamics, which is essential for effective separation. Additionally, precise fluid con-
trol and integrated functionalities within these devices allow for enhanced reaction kinet-
ics and reduced process steps, making them ideal for applications in biochemical assays, 
environmental monitoring, and medical diagnostics [1–4]. 

Micro elastofluidics is an emerging and promising research field of microfluidics. 
Micro elastofluidics was first introduced by Nguyen [5] and holds considerable potential 
for a variety of applications, including particle/cell separation [6–8], controlled drug re-
lease [9], tuneable optofluidic devices [10], tuneable droplet-size generation [11], capillary 
flow enhancement [12], mixing [13,14], and the development of fluidic circuits [15,16]. 

Despite recent advancements in flexible microfluidic devices, such as those designed 
for wearable applications, phenomena arising from fluid–structure interaction at both mo-
lecular and device scales have yet to be fully explored. The field of micro elastofluidics 
will benefit from substantial advancements in computational fluid–structure interaction 
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(FSI) methods [17–19]. These computational techniques are crucial for designing, optimis-
ing, and understanding mechanisms that rely on the intricate interactions between fluidic 
and structural dynamics at the microscale. In micro elastofluidics, these models could also 
predict the deformation of microstructures and microchannels due to fluid flow and vice 
versa. In this context, the incorporation of reliable FSI models is crucial for accurately fore-
casting interconnected physical phenomena. Utilising high-fidelity simulations enables a 
thorough examination of the specific application, taking into account all relevant scales 
involved. 

This review paper highlights the instrumental role of computational methods such 
as finite element method (FEM), boundary element method (BEM), molecular dynamics 
(MD), lattice Boltzmann method (LBM), and immersed boundary method (IBM) in ad-
vancing FSI for micro elastofluidics. Each of these methods offers distinct advantages and 
faces specific challenges, making their study and application crucial for the development 
of microfluidic devices. We also explore the application of computational FSI methods, 
highlighting their impact on the development of microdevices such as microvalves [20,21], 
micropumps [22–26], and micromixers [27–33] (Figure 1). These devices utilise the princi-
ples of FSI to enhance their performance and functionality, adapting to the dynamic na-
ture of interactions between fluid flow and elastic structures. Microvalves, for example, 
benefit from FSI models for optimised flow control, ensuring that they can operate under 
varying pressures and fluid properties. Micropumps are devices where FSI is indispensa-
ble for optimising pump efficiency and reliability under diverse operation conditions. 

 
Figure 1. A schematic overview of the computational methods: Finite element method (FEM), 
boundary element method (BEM), molecular dynamics (MD), lattice Boltzmann method (LBM), and 
immersed boundary method (IBM) and application domains facilitated by these fluid–structure in-
teraction (FSI) methods. 
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Moreover, designing micromixers utilises FSI to refine the geometries and mixing 
mechanisms, enabling effective mixing of fluids at low Reynolds numbers, which are typ-
ical in microfluidics. The precise control and enhanced mixing derived from FSI models 
are vital for applications ranging from chemical synthesis to biological assays. 

Beyond device-specific applications, computational FSI methods play a transforma-
tive role in biomedical applications such as cell separation [34–39] and particle manipula-
tion [40–45]. These processes require not only precision but also gentle handling of deli-
cate biological specimens, which can be achieved through well-controlled microenviron-
ment, as facilitated by FSI modelling. In addition, cardiovascular applications of FSI in 
micro elastofluidics have gained recent attention [46–50]. This research is vital for creating 
patient-specific cardiovascular applications such as artificial heart valves and on-chip 
blood analysis systems, which require exact simulations to improve treatment efficacy and 
patient outcomes [51–56]. Moreover, FSI models are essential for designing cardiovascular 
devices that mimic or interact with the biomechanical properties of tissues, improving 
therapeutic outcomes and patient-specific treatments. This review also discusses the chal-
lenges and future directions in the computational aspect of FSI in micro elastofluidics, 
including the need for more sophisticated models that can accurately predict complex in-
teractions in real–time and under variable operation conditions. The continued evolution 
of computational tools and techniques is likely to further enhance the capabilities and ap-
plications of FSI in micro elastofluidics, marking an exciting frontier for both fundamental 
research and practical applications. 

Overall, the integration of computational FSI methods into micro elastofluidics rep-
resents a significant stride towards more advanced, efficient, and versatile microfluidic 
systems. Through detailed case studies and theoretical analyses, this review aims to pro-
vide a comprehensive overview of the current state and promising future of FSI in this 
innovative field, encouraging further research and development. 

2. Fundamentals of Fluid–Structure Interaction in Micro Elastofluidics 
In microfluidics, channels and structures with dimensions on the order of microme-

tres are commonly used to manipulate and control fluid behaviour [57]. Microchannels 
have been utilised to solve small-scale flow and fluid manipulation tasks within microflu-
idic devices. Polydimethylsiloxane (PDMS) is a popular material for making microchan-
nels owing to its cost-effectiveness, ease of use, transparency, biocompatibility, and elas-
ticity [4,58–61]. The low Young’s modulus of PDMS allows for the emulation of blood 
vessels and soft organs in biomedical studies [62]. Nevertheless, its elasticity poses chal-
lenges in both experimental and theoretical modelling due to its susceptibility to a change 
in channel geometry induced by the flow, and in turn, affecting the overall hydrodynamic 
behaviour of the device. 

In many microfluidic applications, the wall of microchannels is flexible or stretchable 
to adapt to biological systems, leading to the introduction of the new subfield of micro 
elastofluidics [5]. Micro elastofluidics is further categorised as digital and continuous-flow 
micro elastofluidics. Digital micro elastofluidics is based on elastic capsules or deformable 
beads flowing in the fluid. Continuous micro elastofluidics is based on deformable struc-
tures and their interactions with the fluid. Both branches have their unique features and 
applications. For example, elastic capsules [63] can be used for drug delivery and liquid 
storage, while stretchable pump [64] is the perfect example of continuous-flow micro 
elastofluidics. 

In micro elastofluidics, unique features of microfluidics such as flow regime, surface 
tension, diffusion, fluidic resistance, and inertial and shear forces play the same roles in 
the flow behaviour. Fluid flow is usually laminar in micro elastofluidics since the Reyn-
olds number (𝑅𝑅𝑒𝑒 = 𝜌𝜌𝜌𝜌𝐷𝐷ℎ

𝜇𝜇
) in most applications is less than one, although high-flow regimes 

may have Re in the range of 10–100. Surface tension, arising from cohesive forces between 
liquid molecules, is relatively strong within a microfluidic system and can be determined 
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through the Young–Laplace equation (∆𝑃𝑃 = 𝛾𝛾( 1
𝑅𝑅1

+ 1
𝑅𝑅2

)) [65,66], where ∆𝑃𝑃 represents the 
pressure difference, 𝛾𝛾 is the surface free energy of the liquid, and 𝑅𝑅1 and 𝑅𝑅2 denote the 
radii of curvature, perpendicular and parallel to the liquid flow, respectively. Diffusion, 
the spreading of particles due to random Brownian motion, is determined by the Einstein–
Smoluchowski theory (𝑑𝑑2 = 6𝐷𝐷𝐷𝐷), where 𝑑𝑑 is the distance travelled by the particle, 𝑡𝑡 is 
time, and 𝐷𝐷 is the coefficient of diffusion. Fluidic resistance (R), analogous to electrical 
resistance, dictates how easily fluids move through microchannels (𝑄𝑄 = ∆𝑃𝑃

𝑅𝑅
), where Q is 

the flow rate and ∆𝑃𝑃 is the pressure drop across the channel, The fluidic resistance can 
be calculated using formulas specific to the channel shape [67,68]. However, at small di-
mensions, such as those encountered in micro/nanochannels, the friction factor undergoes 
significant changes. While the structural form of the conventional friction factor law is 
retained, the value of the Poiseuille number increases with the hydrophilicity of the chan-
nel walls. This shift highlights the limitations of traditional continuum theories, which fail 
to account for nanoscale phenomena such as wall slip and spatial variations in transport 
properties [69]. Due to the flexible and stretchable nature of the channels or particles, an 
added physics of fluid–structure interaction is necessary to comprehend the fluidic phe-
nomena in the device. In the next section, we discuss how structural deformability inter-
acts with the flow of fluid and vice versa. 

2.1. Fundamentals of Fluid–Structure Interaction 
In micro elastofluidics, the study of FSIs is crucial for understanding the behaviour 

of fluids confined in flexible microchannels and the impact of this behaviour on the sur-
rounding structures. As described by Duprat and Stone [70], FSI denotes mechanical prob-
lems where the flow field affects the orientation, shape, and location of an interacting ob-
ject, leading to reciprocal modifications in the flow pattern. The flexible and elastic nature 
of the microchannel does not allow the use of already established rules of rigid microflu-
idics and necessitates the incorporation of the fluid–structure interaction to obtain suitable 
engineering solutions. 

The focus of FSI is on the coupling between fluid dynamics and structural mechanics. 
Fluid flow exerts forces on a structure, potentially causing it to deform. The magnitude of 
these deformations depends on fluid pressure, velocity, and material properties of the 
structure. Minor deformations may not significantly affect the fluid flow. However, larger 
deformations create a feedback loop where the altered structure modifies the behaviour 
of the fluid. An FSI with negligible influence of the deformation on fluid flow is considered 
as a one-way fluid–structure interaction. Problems with one-way FSIs are relatively easy 
to manage and comprehend. A two-way or fully coupled FSI induces a deformation large 
enough to affect the fluid flow, which in turn significantly changes the flow-induced de-
formation of the structure (Figure 2). These complex interactions are important for bio-
medical problems such as blood flow in flexible vessels [71] and designing medical de-
vices such as micropumps [64,72]. 
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Figure 2. Fluid–structure interaction: (A) one-way FSI, (B) two-way FSI. 

Considering the interface between fluid and a deformable structure, the FSI can also 
be categorised further into two types: (i) fluid–wall interface and (ii) fluid–particle inter-
face (Figure 3). In FSI with the fluid–wall interface, the deformable structures are the walls 
of the microchannels (Figure 3A). These walls are elastic, flexible, and fixed. For example, 
in continuous micro elastofluidics, the walls of the microchannel can be bent and stretched 
but cannot move. Hence, analysing continuous micro-elastofluidic problems should con-
sider the FSI at the fluid–wall interface. In the FSI at the fluid–particle interface, deforma-
ble structures are moving particles (Figure 3B). These particles are elastic and deformable 
but are not fixed at a point. Fluid forces cause the cell to deform as well as change its 
position, and these changes in shape and position alter the pattern of fluid flow. For in-
stance, problems related to digital micro elastofluidics are analysed through the FSI at the 
fluid–particle interface. Methods have been developed to study this FSI at the particle 
boundary, with applications in cell sorting and biomechanics of cells. 

 
Figure 3. (A) Fluid–wall FSI, (B) Fluid–particle FSI. Yellow colour shows the fluid domain and 
grey colour shows the solid domain. 

Understanding the relationship between volumetric flow rate 𝑄𝑄 and pressure drop 
∆𝑃𝑃 is crucial for the design and operation of fluidic systems. In deformable microchan-
nels, this ∆𝑃𝑃 − 𝑄𝑄 relationship is nonlinear, which is a major difference from the flow in 
rigid microchannels [73]. The deformation of channel walls reduces flow resistance, caus-
ing a lower pressure drop [19,74]. To elucidate this relationship, numerous experimental 
works have been conducted, and researchers have developed empirical models for pres-
sure-flow characteristics. For instance, Gervais et al. [73] investigated the behaviour of a 
fluid flow in stretchable microchannels using confocal microscopy. A model was created 
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to describe the observed pressure-flow characteristics. The results indicated that flexible 
microchannels could enable higher flow rates compared to rigid microchannels of identi-
cal size driven by the same pressure difference. Subsequently, Hardy et al. [75] investi-
gated the behaviour of PDMS microchannels with flexible walls and reported significant 
differences in pressure drop compared to rigid channels. The team demonstrated that the 
pressure drop in flexible microchannels decreased to 35% of that in identical channels with 
rigid walls. 

Another FSI problem is compressible flow in deformable channels. The mass flow 
rate is a function of undeformed microchannel dimensions, the differential pressure across 
a microchannel, and the characteristics of the channel’s surface such as elastic modulus, 
thickness, and Poisson’s ratio [19,74,76–82]. Although efforts have been made toward the 
development of empirical models for the ∆𝑃𝑃 − 𝑄𝑄 relationship, these models only apply 
to specific conditions with small domain characteristics. To comprehend the generalised 
and complete FSI phenomena, a numerical analysis is necessary. The next section dis-
cusses the fluid dynamics and solid mechanics of FSI and its governing equations. 

2.2. Fluid Dynamics and Solid Mechanics of FSI 
Understanding the fluid dynamics of FSI poses a multifaceted challenge for the de-

sign and applications of micro-elastofluidic devices. Key considerations include the dom-
inant role of surface tension, potential hyperelastic responses of the elastomeric materials, 
and the two-way dynamic coupling between fluid stresses and structural deformations. 
Analytical solutions are rarely feasible for FSI problems, and lab experiments cannot cap-
ture the full range of behaviours. These bottlenecks make numerical simulations crucial 
for understanding the complex physics of how fluids and solids interact. Understanding 
the FSI in microfluidics has been advanced through the development of dimensionless 
continuum finite approaches (FEM, BEM) and digital finite approaches (MDM and LBM) 
[83]. These methods are discussed thoroughly in the next section. 

FSI involves the fluid dynamics as well as solid mechanics of stretchable solids con-
taining the fluid or surrounded by the fluid. Without the effect of the flexible structure on 
the flowing fluid, the behaviour of the fluid is governed by the equation of continuity: 

𝛻𝛻 ∙ 𝒖𝒖 = 0 (1) 

and Navier–Stokes equation: 

𝜌𝜌 �
𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

+ (𝜵𝜵.𝒖𝒖)𝒖𝒖� = −𝛻𝛻𝛻𝛻 + 𝜇𝜇𝛻𝛻2𝒖𝒖 + 𝑭𝑭 (2) 

where 𝜌𝜌, 𝒖𝒖, 𝑝𝑝, 𝜇𝜇 are the fluid density, vector velocity, pressure, and dynamic viscosity 
respectively, 𝑡𝑡 is the time, and 𝑭𝑭 represents the external body force. 

The body force 𝑭𝑭 in FSI is introduced by the flexible structure. This force can be ap-
plied externally on the deformable structure to simplify the problem in one-way FSIs. Al-
ternatively, this force can be induced in the structure by the flowing fluid in coupled FSIs, 
hence making the problem more precise at the expense of complexity. This induced force 
depends on the nature of the material and the behaviour of the flexible structure under 
stress and strain. 

In the solid domain, the equations of motion are typically described by the linear 
elasticity equations, assuming small deformations. The governing equation is the linear-
ised form of the momentum balance equation [84]: 

𝜌𝜌𝑠𝑠
𝛿𝛿2𝑑𝑑𝑠𝑠
𝛿𝛿𝑡𝑡2

= 𝛁𝛁.𝝈𝝈 (3) 

where 𝜌𝜌𝑠𝑠 is the density of the solid, 𝑑𝑑𝑠𝑠 represents the displacement of the solid, and 𝝈𝝈 
is the stress tensor. 

The constitutive relation between stress and strain (Hooke’s law) is often utilised, 
linking stress 𝝈𝝈 to strain 𝝐𝝐 via Lamé’s equation of deformation [85]: 
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𝝈𝝈 = 𝜆𝜆𝑡𝑡𝑟𝑟(𝝐𝝐)𝑰𝑰 + 2𝜇𝜇𝝐𝝐 (4) 

where 𝜆𝜆 = 𝐸𝐸ʋ
(1+ʋ)(1−2ʋ)

 is Lamé’s first parameter, representing the material’s compressibil-
ity since ʋ is the Poisson’s ratio of the material, 𝑡𝑡𝑟𝑟(𝝐𝝐) is the trace of the strain tensor 𝝐𝝐, 
which corresponds to the volumetric strain, 𝜇𝜇 = 𝐸𝐸

2(1+ʋ)
 is Lamé’s second parameter, also 

known as the shear modulus, characterising the material’s resistance to deformation, and 
𝑰𝑰 is the identity tensor. The term 𝜆𝜆𝑡𝑡𝑟𝑟(𝝐𝝐)𝑰𝑰 accounts for the isotropic (volumetric) defor-
mation. This term is then multiplied by the identity tensor 𝑰𝑰, indicating that this part con-
tributes to the isotropic stress or hydrostatic pressure component. The term 2𝜇𝜇𝝐𝝐 repre-
sents the deviatoric deformation, accounting for the deformation that leads to shape 
changes without altering the volume. 

The overall equation combines these two components to describe the complete stress 
tensor 𝝈𝝈 in the context of fluid–structure interaction. It reflects the material response to 
both isotropic and deviatoric deformations induced by external forces or fluid interac-
tions. Modelling FSIs in micro-elastofluidic devices, where fluid flow deforms elastomeric 
structures, requires specialised approaches. Hyperelastic material models, capable of han-
dling large deformations, are to be considered for accurate results. Many constitutive 
models have been formulated to characterise the nonlinear mechanical behaviour of hy-
perelastic materials. Within this theoretical framework, the neo-Hookean [86] and 
Mooney–Rivlin [86] models stand out as widely adopted approaches for describing large 
deformations, which are characteristic of elastomers. 

2.3. Boundary Conditions 
In FSI problems, boundary conditions define the constraints and interactions that 

shape the behaviour of the system. Three distinct types of boundaries are considered for 
micro-elastofluidic applications: (i) boundary conditions at the device surface that may be 
moving in stretchable microfluidics; (ii) boundary conditions related to the surface of par-
ticles that also may be in motion and potentially changing shape; (iii) inlet and outlet con-
ditions, due to the open-system nature of microfluidic devices, (Figure 4). 

In most cases, device surfaces are considered impermeable and under the no-slip 
condition. These surfaces are typically regarded as rigid and stationary. Thus, the interac-
tion between the device and the flowing fluid is primarily defined by the static nature of 
the channel wall and the no-slip condition. However, device walls are deformable in flex-
ible microchannels. Thus, boundary conditions at the device surfaces change with time. 
We can incorporate these changes in FSI simulations as a moving boundary condition. 

 
Figure 4. Boundaries in typical FSI problem. 

The study of elastic particle transport requires the modelling of the FSI at particle 
boundaries. These interactions encompass both velocity and stress continuity. The move-
ment and alteration of particles impact the flow and are reciprocally influenced by it, 
thereby establishing an FSI problem. Hydrodynamic forces and the torque on particles 
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determine the translation, rotation, and deformation of the particle surface. These phe-
nomena on particles are studied under Inertial Particle Microfluidics (IPMF). The force 
and torque acting on particles are calculated as: 

𝐹𝐹 = ∮𝑑𝑑𝑑𝑑𝝈𝝈.𝒏𝒏  (5) 

𝑇𝑇 = ∮𝑑𝑑𝑑𝑑𝒙𝒙 × (𝝈𝝈.𝒏𝒏)  (6) 

In these equations, 𝝈𝝈, 𝒏𝒏, and 𝒙𝒙 represent the fluid stress tensor, unit vector normal 
to the surface, and the spatial position of a point on the surface of the particle, respectively. 

Probably the most difficult part of IPMF is numerically solving the FSI problem. Ad-
ditional forces may become noticeable as particles move close to each other or close to the 
device’s surface. These forces either have chemical electrostatic interactions, adsorption 
phenomena, surface chemistry effects, and chemical gradients or physical origins (inertial 
and viscous drag forces, along with lift and Dean forces). Physical factors such as gravita-
tional and buoyancy forces become insignificant in IPMF because of the high fluid stress 
and low volume [87]. For considering the elastic behaviour of particles in IPMF, a suitable 
elastic constitutive model must be selected to describe the particle’s deformation under 
hydrodynamic stresses. 

The inlet and outlet conditions hold significant importance for modelling the fluid–
structure interaction in micro elastofluidics. In reality, where only specific parts of a device 
are pertinent or feasible for simulations, it is crucial to define the flow at the planes of the 
inlet and outlet of the selected variable. For subsets representing straight channels or unit 
cells with periodic characteristics such as serpentine channels, periodic boundary condi-
tions usually provide the best and most direct solution. Any particle or liquid leaving one 
side of the numerical domain enters again into the other side. Essentially, the model is an 
unlimited collection of unit cells, with the stimulated domain serving as the definition of 
each unit cell. 

On the other hand, periodic boundary conditions are not suitable for subsets with 
intricate shapes. In such cases, pressure and volume conditions are important at the inlet 
and outlet. For an unknown flow field at the inlet plane, modellers use a velocity profile 
to characterise the flow within a specified channel geometry, which presumes no up-
stream perturbations. For a variety of geometrically simple cross sections, time-independ-
ent closed-form solutions of Navier–Stokes equations for duct pipes are available [88], 
making them an obvious choice for creating a comprehensive velocity profile. 

Since flow within the stimulated domains determines the outlet plane flow field, and 
flow perturbations upstream outside of the domain are minimal, it becomes easier to con-
trol the outlet. An alternative outflow condition, often used instead of periodicity, is a 
zero-gradient condition [89]. Additionally, non-periodic boundary conditions introduce 
complexities in handling particles entering and exiting the subset. 

2.4. Coupling Approaches 
The selection of a suitable coupling approach is the cornerstone of a successful FSI 

simulation. This determines the mechanism by which the fluid and structure domains ex-
change displacement and force information at the interface during iterative solutions or 
time steps. The selected coupling strategy can significantly impact the numerical stability, 
convergence rate, and the ability to capture the true physics of the coupled system. 

Two primary approaches exist: monolithic and partitioned (Figure 5). In monolithic 
approaches, the governing equations for fluid and solid domains are integrated into a sin-
gle, unified framework and solved simultaneously. Interfacial boundary conditions (e.g., 
no-slip, stress continuity) are implicitly embedded within this framework. Monolithic 
schemes offer superior accuracy for tightly coupled FSI problems but often demand the 
development of highly specialised solvers, potentially increasing implementation com-
plexity and computational expense [90–92]. In contrast, the partitioned approach consid-
ers the fluid and structure as separate computational domains. This approach enables the 
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independent discretisation of each domain and the application of numerical solution tech-
niques optimised for the governing physics within each domain. The approach allows for 
the use of specialised, potentially pre-existing “legacy” solvers optimised for each respec-
tive physical domain (e.g., fluid vs. structural mechanics). Interfacial data exchange (dis-
placements, tractions) occurs iteratively, potentially simplifying development time and 
enhancing flexibility. However, careful attention must be paid to interface tracking and 
the stable, accurate transfer of data across this dynamic interface. Specialised algorithms 
designed for moving boundary problems are often required to ensure numerical stability 
and prevent unphysical solution behaviour. 

 
Figure 5. FSI coupling approaches, (A) monolithic, (B) partitioned. 

An additional classification scheme for the FSI solution is based on the discretisation 
of the mesh, which dictates how interfacial boundary conditions are imposed within the 
discretised system of equations (Figure 6). One is the conforming meshing method, where 
the fluid–structure interface is considered as a physical boundary. The fluid and solid do-
main meshes must perfectly match. This often leads to re-meshing (or mesh-updating) as 
the structure deforms throughout the simulation, hence adding computational cost. The 
other is the non-conforming meshing method, where the fluid–structure interface is not 
treated as a strict alignment boundary. Instead, the interface location and its conditions 
(e.g., stress continuity) are considered constraints within the governing equations. This 
approach enables independent meshing for each domain, streamlining the simulation 
setup and avoiding re-meshing. 
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Figure 6. Mesh discretisation approaches, (A) conforming meshing, (B) non-conforming meshing. 
White circle and grey area represent the regid body and fluid domain respectively. In conforming 
meshing scheme, mesh gets updated after every time step while in non-conforming meshing 
scheme, mesh remains the same. 

3. Computational Methods for Studying Fluid–Structure Interactions 
Numerical simulation techniques play a crucial role in science and engineering, ena-

bling researchers to study complex phenomena and make predictions based on mathe-
matical models. In recent years, computational methods have played a significant role in 
studying FSIs, providing valuable insights into the behaviour of fluids and structures. In 
the field of micro elastofluidics, numerical methods have been used in the design, analysis, 
and optimisation of micro-elastofluidic devices. Additionally, numerical approaches such 
as FEM, BEM, MD, and LBM allow for the discretisation and solving of the governing 
equations of fluid dynamics and hyperelasticity with their intricate coupling at the fluid–
structure interface. These methods are indispensable for predicting flow patterns, under-
standing how microstructures deform under fluid stresses, and designing novel micro-
elastofluidic devices. Notably, these numerical approaches enable the exploration of a 
wide parameter space far beyond what may be accessible experimentally, aiding the op-
timisation and development of devices for applications ranging from biomedical diagnos-
tics to soft micro-robotics. Furthermore, the application of these numerical methods ex-
tends to various fields, including the development of passive microvalves [93,94], and mi-
cromixers [95–97], to understand the fluid dynamics and to optimise the performance of 
these devices. Extensive numerical methods have been developed and refined for micro-
fluidic applications such as biosensors [98,99] and biofluid handling [100] in wearable de-
vices. However, the emerging field of micro elastofluidics warrants further advancements 
due to the inherent complexities of fluid–structure interactions at the microscale. There-
fore, numerical methods are integral to gaining insights into the complex fluid–structure 
interactions and optimising the performance of micro-elastofluidic systems. This section 
discusses comprehensively all numerical methods that can be used for FSIs in micro 
elastofluidics. Figure 7 illustrates the different computational methods in space and time 
scale. 
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Figure 7. Space and time scale of different computational methods with comparative sizes. 

3.1. Finite Element Method 
The finite element method (FEM) is an indispensable computational tool for tackling 

the complex challenges presented by FSIs in micro elastofluidics. This method divides the 
domain of interest into smaller elements, allowing for the accurate modelling of complex 
geometries and boundary conditions (Figure 8A). FEM has been widely applied in various 
aspects of microfluidics. Hung et al. [101] modelled mass transfer using the FEM in a high-
aspect-ratio microfluidic device, which provided a stable and uniform microenvironment 
for cell growth in a high-throughput mammalian cell culture array. Erickson et al. [102] 
investigated the role of surface heterogeneity on electrokinetically driven microfluidic 
with a 3D FEM, aiming to enhance mixing in a T-shaped micromixer. Bianchi et al. [103] 
implemented FEM models to simulate the electroosmotic-driven flow division at a T-junc-
tion. 

The FEM has also been applied in various contexts to investigate fluid–structure in-
teractions in microfluidics. For example, Zhang et al. [104] reported a groundbreaking 
application of the Cell-based Smoothed Finite Element Method (CS-FEM) to computa-
tional fluid dynamics (CFD) and FSI simulations. The CS-FEM belongs to the broader fam-
ily of Smoothed Finite Element Methods (S-FEMs), which aim to enhance accuracy and 
robustness by applying strain smoothing techniques. Specifically, the CS-FEM simplifies 
calculations by not requiring explicit shape functions and demonstrates better tolerance 
to distorted meshes. This study demonstrated that the CS-FEM offered greater accuracy 
and stability in handling deformable interfaces and flow fields that typify FSI problems, 
making it well-suited for simulations relevant to micro elastofluidics. Erickson et al. [105] 
applied the same approach to investigate how smart one-way microvalves behaved when 
the FSI was taken into account. Hence, the FEM has been proven vital in comprehending 
FSIs in micro elastofluidics. 

A typical FEM approach consists of five steps: (i) Discretisation: the continuum do-
main is discretised into a finite number of smaller elements that are easier to manage. (ii) 
Element equation formulation: For each element, the governing physical equations are 
formulated. These equations typically stem from fundamental conservation laws (such as 
mass, momentum, and energy conservation) and are expressed in terms of local element 
variables. (iii) Assembly: The local element equations are assembled into a global system 
of equations that models the entire problem domain. This step involves integrating the 
contributions of individual elements to the overall behaviour of the system. (iv) Solution: 
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The global system of equations is solved numerically to find the unknowns, such as dis-
placements and pressures. This solution process may incorporate iterative methods and 
solvers that handle nonlinearities and complex boundary conditions. (v) Post-processing: 
The solution obtained is interpreted in terms of physical quantities of interest, such as 
stress distributions, fluid velocities, and pressures. This helps in evaluating the perfor-
mance and safety of the micro-elastofluidic devices. The FEM for simulating FSIs in micro 
elastofluidics consists of modelling the fluid domain, modelling the deformable structure 
domain, and then the fluid–structure interface coupling. In every phase, specific mesh 
strategy and physics are used to simulate and then coupled them. Here, we discuss the 
physics and governing equations of these domains. 

 
Figure 8. Computational methods for FSIs. (A) Discretisation of fluid and solid domain in the FEM; 
(B) discretisation of domain in the BEM; (C) molecules’ interaction in the MD method [106]; (D) 2D 
and 3D configurations of the LBM, (i) 2D nine velocity configuration, (ii) 3D nineteen velocity con-
figuration, (iii) 3D twenty seven velocity configuration [107]; (E) (i) bounce back method [87], (ii) 
extrapolated bounce back method illustration [107]; (F) IBM as a Lagrangian and Eulerian descrip-
tion [87]. 
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3.1.1. Modelling of Fluid Domain 
The FEM begins by discretising the fluid domain (e.g., a microfluidic channel) into a 

mesh of smaller, interconnected elements. These elements are often triangles or quadrilat-
erals in 2D and tetrahedra or hexahedra in 3D. In this domain, the FEM describes the mesh 
as an Eulerian space. The behaviour of the fluid within this mesh is governed by the fun-
damental Navier–Stokes equations. These equations express the conservation of mass, i.e., 
Equation (1), and momentum, i.e., Equation (2). To solve the Navier–Stokes equations nu-
merically, the FEM employs a technique called the Galerkin method. Essentially, the equa-
tions are transformed into their “weak form” and approximated using shape functions. 
These shape functions describe how the fluid velocity and pressure vary within each ele-
ment of the mesh. The introduction of shape functions in simulations is defined as: 

𝒖𝒖(𝑥𝑥) = ∑𝑁𝑁𝑖𝑖(𝑥𝑥)𝒖𝒖𝑖𝑖  (7) 

𝑝𝑝(𝑥𝑥) = ∑𝑀𝑀𝑗𝑗𝑝𝑝𝑗𝑗  (8) 

where 𝑁𝑁𝑖𝑖(𝑥𝑥) is the shape function, and 𝒖𝒖𝑖𝑖 is the nodal velocity. Similarly, in Equation 
(8), 𝑀𝑀𝑗𝑗 is the shape function, and 𝑝𝑝𝑗𝑗 is the nodal pressure. 

3.1.2. Modelling of Deformable Structure 
The versatility of the FEM extends to handling the solid mechanics of deformable 

structures interacting with the flow. The FEM divides the structural domain in the same 
way as the fluid domain, i.e., into small finite elements. However, the structural domain 
uses a Lagrangian description. The governing equations of solid mechanics, i.e., Equation 
(9), describe the balance of forces within the structure and the relationship between stress 
and strain (deformation). The choice of a constitutive model (e.g., linear elastic, hypere-
lastic, viscoelastic) dictates how the material responds to these stresses. Similar to the fluid 
domain, FEM discretises deformable structures with elements and uses shape functions 
to approximate the displacement field. 

𝜵𝜵.𝝈𝝈 + 𝒇𝒇𝒔𝒔 = 𝟎𝟎  (9) 

𝒅𝒅(𝑥𝑥) = ∑𝑋𝑋𝑖𝑖𝒅𝒅𝑖𝑖  (10) 

where 𝝈𝝈 is the stress tensor, and 𝒇𝒇𝑠𝑠 is body force on the structure. More importantly, this 
body force comes from the fluid pressure on the structure in FSI problems. In Equation 
(10), 𝒅𝒅(𝑥𝑥) is the displacement vector, 𝑋𝑋𝑖𝑖 is the shape function, and 𝒅𝒅𝑖𝑖 is the nodal dis-
placement vector. For micro elastofluidics, selecting the appropriate shape functions is 
crucial and directly depends on the material models used to represent the deformable 
structures. For materials exhibiting linear elastic behaviour, where deformations are 
small, linear or quadratic shape functions often provide sufficient accuracy. However, mi-
crofluidic systems often involve significant deformations, demanding the use of hypere-
lastic material models. These models describe nonlinear stress–strain relationships, thus 
necessitating higher-order shape functions within the FEM to accurately represent the 
complex deformation patterns that can occur. 

3.2. Boundary Element Method 
The boundary element method (BEM) is another numerical technique for solving 

problems involving FSI in microfluidics. Analysing the behaviour of fluids and structures 
at the boundaries of microfluidic devices is one of the advantages of the BEM. Unlike the 
FEM, which divides the entire domain into smaller elements, the BEM is based on discre-
tising the boundary of the domain of interest as shown in Figure 8B. 

For FSIs in micro elastofluidics, the BEM converts the governing partial differential 
equations (PDEs) of fluid dynamics and structural mechanics into boundary integral 
equations using appropriate Green’s functions [108]. The integral equations for both the 
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fluid and structural domains are discretised using boundary elements. The interactions 
are numerically integrated across each element. This step involves the computation of 
governing coefficients, which quantify the effect of one element on another across the 
fluid–structure interface. The discretised equations form a system of linear algebraic equa-
tions, which are solved to ascertain the unknown boundary values, such as fluid pressures 
and structural displacements. This resolution often employs iterative methods, especially 
when the interaction between fluid and structure exhibits significant nonlinearity. After 
computing the boundary values, further calculations are conducted to evaluate other in-
ternal fields as required. For micro elastofluidic devices, this may involve determining 
fluid velocity field or stress distribution within the structural material, vital for the thor-
ough analysis and design of the devices. 

The formulation of integral equations in BEM is crucial for solving problems involv-
ing FSIs in micro elastofluidics. Integral equations are derived from the domain’s govern-
ing differential equations using mathematical techniques involving Green’s functions. 
Green’s functions are specific solutions to differential equations under impulse (or point 
source) conditions and are fundamental to problems in physics and engineering. Essen-
tially, these functions describe how effects such as stress, heat, or electromagnetic fields 
propagate from a source point to an observation point in space. 

The BEM uses Green’s functions to convert the local description of the phenomena 
(differential equations) into a global one (integral equations) over the boundary. This con-
version is based on boundary integral theorems such as Green’s theorem in potential the-
ory or Kelvin’s theorem in elasticity [109], which relates the values of a function inside a 
domain to values on the domain’s boundary. The specific Green’s function depends on 
the type of differential equation and the nature of the domain (e.g., infinite space, half-
space, bounded domain). Once the appropriate Green’s function is selected, the integra-
tion over the boundary can be set up. This step is crucial because it reduces the problem 
from a volumetric one to a surface-based one, significantly simplifying the computational 
domain and potentially reducing the amount of computational effort required. However, 
accurately computing Green’s functions and their integrals over complex boundary 
shapes can be mathematically and numerically challenging, often requiring sophisticated 
numerical integration techniques and careful handling of singularities. 

For fluids, particularly under the assumption of potential flow, which is common in 
many microfluidic applications due to the low Reynolds number, the fluid behaviour can 
be described by the Laplace equation for the potential ∅ , where ∇2∅ = 0 . The integral 
equation for the fluid potential, derived from the Laplace equation, is expressed as [108]: 

∅(𝑥𝑥) = ∫ ∅(𝑦𝑦) 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑛𝑛𝑦𝑦

𝑑𝑑𝑆𝑆𝑦𝑦 −
.
𝛤𝛤 ∫ 𝐺𝐺(𝑥𝑥,𝑦𝑦) 𝜕𝜕∅(𝑦𝑦)

𝜕𝜕𝑛𝑛𝑦𝑦
𝑑𝑑𝑆𝑆𝑦𝑦

.
𝛤𝛤   (11) 

where  ∅(𝑥𝑥) is the potential at the point(𝑥𝑥), 𝐺𝐺(𝑥𝑥,𝑦𝑦) is Green’s function for the Laplacian, 
applicable to the boundary conditions and geometry of the fluid domain, 𝛤𝛤 denotes the 
boundary of the domain, 𝜕𝜕

𝜕𝜕�𝑛𝑛𝑦𝑦�
 represents the derivative normal to the boundary at point 

𝑦𝑦, 𝑑𝑑𝑆𝑆𝑦𝑦 is the differential boundary element at 𝑦𝑦. This equation effectively transforms the 
volumetric problem of fluid dynamics into a surface problem, simplifying the computa-
tional domain to just the boundaries where fluid and structural interactions occur. 

For the structural component, when considering elastic behaviour under small de-
formations, the displacement field 𝒅𝒅 in the structure can be described using linear elas-
ticity. Assuming isotropic and homogeneous material properties, the corresponding inte-
gral equation derived from the Navier–Cauchy equations for elasticity is [108]: 

𝒅𝒅(𝑥𝑥) = ∫ 𝑇𝑇(𝑦𝑦, 𝑥𝑥)𝒅𝒅(𝑦𝑦)𝑑𝑑𝑆𝑆𝑦𝑦 −
.
𝛤𝛤 ∫ 𝐷𝐷(𝑦𝑦, 𝑥𝑥)𝒕𝒕(𝑦𝑦)𝑑𝑑𝑆𝑆𝑦𝑦

.
𝛤𝛤   (12) 

where 𝒅𝒅(𝑥𝑥) is the displacement at point 𝑥𝑥, 𝑇𝑇(𝑦𝑦, 𝑥𝑥) and 𝐷𝐷(𝑦𝑦, 𝑥𝑥) are the traction and dis-
placement kernels derived from the fundamental solutions of elasticity, and 𝒕𝒕(𝑦𝑦) repre-
sents the traction at point 𝑦𝑦 on the boundary 𝛤𝛤. 
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Coupling at the fluid–structure interface requires that the fluid forces, e.g., pressure 
and shear stress derived from the fluid potential ∅ and the structural responses such as 
displacements and stresses, accurately match at the interface. Kinematic continuity en-
sures that the displacement of the structure matches the fluid displacement at the bound-
ary. Dynamic continuity ensures that the sum of stress vectors from both fluid and struc-
ture at their interface is zero, maintaining the force balance. This is achieved by ensuring 
the continuity of displacements and tractions across the interface, linking the fluid and 
structural integral equations. These coupled equations are then solved iteratively or sim-
ultaneously to yield the interaction dynamics essential for device functionality. This cou-
pled approach, facilitated by the BEM, allows for a sophisticated analysis of interactions 
in micro-elastofluidic devices, providing critical insights into device performance and 
guiding design optimisations. Through precise mathematical formulations and bound-
ary-focused computations, the BEM offers a powerful solution to complex FSI challenges 
in the field of micro elastofluidics. 

The BEM offers several advantages for FSIs in micro elastofluidics. The BEM is par-
ticularly advantageous for problems defined on unbounded domains, as it only requires 
the discretisation of the boundary where the solution is sought. This makes the BEM well-
suited for problems where the solution behaviour is primarily on the boundary or exterior 
of the domain, such as in potential flow problems, acoustics, and some electromagnetic 
problems. The BEM potentially requires fewer elements and computational resources 
compared to volumetric discretisation methods, leading to a reduced computational ef-
fort. However, the boundary element method also has limitations. The BEM can face chal-
lenges in dealing with internal singularities within the domain, requiring additional tech-
niques or modifications to accurately handle such cases. Furthermore, the accuracy of 
BEM can cause errors in boundary conditions that may significantly affect the solution. 
Despite the reduced domain discretisation, BEM can become complex and computation-
ally demanding for highly irregular or complex geometries. 

In the context of microfluidics, BEM has been utilised to model and analyse fluid–
structure interactions. For example, Martinez et al. [110] demonstrated the use of the BEM 
for prototyping paper-based microfluidic designs. Li et al. [111] also utilised the BEM to 
create paper-based microfluidic devices by plasma treatment, showcasing the method’s 
versatility in creating microfluidic devices. Additionally, Everstine et al. [112] developed 
a coupled finite element/boundary element approach for FSIs, demonstrating the capabil-
ity of the BEM in addressing complex FSIs. 

3.3. Molecular Dynamics Method 
Molecular dynamics (MD) simulations are a potent computational method for stud-

ying the behaviour of microfluidics at the molecular level [113–116]. In MD simulations, 
positions and velocities of individual atoms or molecules are tracked over time by the 
numerical integration of Newton’s equations of motion (Figure 8C). This allows for the 
investigation of the dynamic behaviour and interactions of the fluid and structure constit-
uents in microfluidic devices and systems. 

Theoretically, the MD method includes all reactions and forces happening at the at-
omistic level and then integrates these effects at the global level and defines the fluid prop-
erties and states. For example, for a fluid consisting of 𝑁𝑁 interacting atoms or molecules 
generally represented as particles, each characterised by positions 𝑥𝑥𝑖𝑖 and velocities 𝑣𝑣𝑖𝑖, 
where 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁, the Newton equation of motions is as follows [117]: 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝒙𝒙𝑖𝑖 = 𝒖𝒖𝒊𝒊  (13) 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝒗𝒗𝑖𝑖 = 1

𝑚𝑚𝑖𝑖
∇𝑖𝑖𝑽𝑽(𝑥𝑥1, … . . , 𝑥𝑥𝑁𝑁)  (14) 

where 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁. 
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The individual velocities are derived from Hamiltonian dynamics [118]. The Hamil-
tonian represents the total energy of the system, encapsulating both kinetic and potential 
energy components. The Hamiltonian (ℋ) of a molecular system in MD simulations is 
defined as the sum of the kinetic energy (𝑇𝑇) of the particles and the potential energy (𝑉𝑉) 
arising from their interactions as [118]: 

ℋ = 𝑇𝑇 + 𝑉𝑉 = ∑ |𝒑𝒑𝑖𝑖|
2𝑚𝑚𝑖𝑖

+𝑁𝑁
𝑖𝑖=1 𝑉𝑉(𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑁𝑁)  (15) 

where  𝑁𝑁 is the number of particles, 𝒑𝒑𝑖𝑖 is the momentum of the 𝑖𝑖th particle, 𝑟𝑟𝑖𝑖is its po-
sition, and 𝑚𝑚𝑖𝑖 is its mass. Further, the momentum 𝒑𝒑𝑖𝑖is related to the velocity 𝒖𝒖𝒊𝒊 of the 
particle by 𝒑𝒑𝑖𝑖 = 𝑚𝑚𝑖𝑖𝒖𝒖𝒊𝒊⬚. The potential energy 𝑉𝑉 represents all the interactions between 
particles. These interactions can be intramolecular (bond stretching, angle bending, dihe-
dral angles) and intermolecular (van der Waals forces, electrostatic forces). The specific 
form of 𝑉𝑉 depends on the model and the nature of the forces considered, often derived 
from quantum mechanical calculations or empirical data. Hamiltonian dynamics inher-
ently conserves the total energy, as well as other quantities like linear momentum and 
angular momentum, assuming no external forces acting on the system. 

Due to the nature of being a system of ordinary differential equations, the integration 
process of Equation (14) is numerically relatively simple. The ease of numerical integra-
tion is a key factor that contributed to the widespread utility and popularity of MD as a 
valuable simulation method for various problems. However, in scenarios where a fluid 
spans macroscopic length scales, computational modelling solely with MD is currently 
unattainable due to the substantial number of particles present in a macroscopic fluid sec-
tion. Given the impracticality of MD for such scenarios, it is often more convenient to ap-
proximate the behaviour of the fluid as a continuum rather than a collection of individual 
particles. This continuum description can be derived directly from Equation (14). Consid-
ering the probability density function 𝑓𝑓({𝑥𝑥𝑖𝑖}, {𝑣𝑣𝑖𝑖}, 𝑡𝑡) representing the positions and veloc-
ities of the 𝑁𝑁 particles. The continuum mass density and velocity fields of the fluid are 
then defined, respectively, as [117]: 

𝜌𝜌(𝑥𝑥, 𝑡𝑡) = ∑ 𝑚𝑚𝑘𝑘 ∫𝑑𝑑𝑥𝑥1, … … ,𝑑𝑑𝑥𝑥𝑁𝑁𝑑𝑑𝑣𝑣1, … … ,𝑑𝑑𝑣𝑣𝑁𝑁𝛿𝛿(𝑥𝑥 − 𝑥𝑥𝑘𝑘)𝑓𝑓({𝑥𝑥𝑖𝑖}, {𝑣𝑣𝑖𝑖}, 𝑡𝑡)𝑁𝑁
𝑘𝑘=1   (16) 

and 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 1
𝜌𝜌(𝑥𝑥,𝑡𝑡)

∑ 𝑚𝑚𝑘𝑘 ∫𝑑𝑑𝑥𝑥1, … … ,𝑑𝑑𝑥𝑥𝑁𝑁𝑑𝑑𝑣𝑣1, … … ,𝑑𝑑𝑣𝑣𝑁𝑁𝑣𝑣𝑘𝑘𝛿𝛿(𝑥𝑥 − 𝑥𝑥𝑘𝑘)𝑓𝑓({𝑥𝑥𝑖𝑖}, {𝑣𝑣𝑖𝑖}, 𝑡𝑡)𝑁𝑁
𝑘𝑘=1   (17) 

It is important to note here these fields such as mass density, velocity, and pressure 
are connected to statistical average microscopic densities of these quantities, reflecting a 
statistical average over a large number of molecules. Therefore, the continuum approxi-
mation used in fluid dynamics can be seen as a moment or mean-field approximation, 
where macroscopic properties are derived from the averaged effects of microscopic inter-
actions. This approach bridges the gap between molecular-level behaviours captured by 
MD simulations and the macroscopic descriptions typical of continuum mechanics 
[106,119,120]. The accuracy and reliability of MD simulations depend on the choice of 
force fields and simulation parameters [121–127]. Force fields describe the interatomic or 
intermolecular interactions and are critical for obtaining accurate results. These forces in-
volve Lennard-Jones potentials for van der Waals forces, Coulombic potentials for electro-
static forces, and specific bonded interactions (stretching, bending, and torsional forces 
for polymers) [126,127]. 

At the microscale, the combined effects of viscosity and elasticity significantly influ-
ence fluid behaviour, resulting in distinct properties that are critical for microfluidic ap-
plications. Enhanced viscosity at that scale affects the fluidic resistance, while altered elas-
ticity impacts how materials respond to deformation and stress [128]. These characteristics 
profoundly influence the behaviour of fluids under mechanical stress and deformation, 
crucial for optimising microfluidic device performance. Several works have been per-
formed to study the elastic and viscous properties of the fluid at the micro- and nanoscale 
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using MD simulations. For instance, Liu et al. [129] conducted MD simulations to investi-
gate the mechanical properties of polymer nanocomposites. The simulation provided in-
sights into the effect of nanoparticle size, concentration, and surface chemistry on the elas-
tic modulus and viscosity of the composite material. Transport properties and fluid flow 
behaviour in microfluidics have been studied by MD simulations. For instance, Wang et 
al. [130] used MD simulations to investigate the flow of polymer solutions through micro-
channels. The authors analysed the effects of polymer concentration, molecular weight, 
and channel geometry on flow behaviour and observed the formation of elastic instabili-
ties. Modi et al. [106] studied the elastic properties of polypropylene and cellulose nano-
fibrils bionanocomposite systems using MD simulations and revealed that the amount of 
cellulose had strong influence on elastic properties of the system. This MD investigation 
also predicted that the introduction of maleic anhydride as the coupling agent could im-
prove the elastic modulus by changing the hydrophobic–hydrophilic adhesion between 
the components of the bionanocomposite. 

MD simulations also enabled the study of behaviour of biological systems. Zhang et 
al. [131] performed MD simulations to investigate the mechanical properties of red blood 
cells (RBCs) in microchannels. The authors studied the deformation and flow behaviour 
of RBCs under various conditions and observed the formation of cell-free layers and cell 
aggregation. Nair et al. [132] stated that MD simulations could be used to study the pro-
tein structure–function relationships and had great potential application in the field of 
drug delivery. 

MD simulations can provide valuable insights into the elastic and viscous properties 
of fluids at the molecular level [106,133]. They allow for the study of complex phenomena 
and provide an in-depth understanding of the underlying mechanisms at the molecular 
scale [134–149]. However, MD simulations are computationally expensive and limited in 
terms of system size and simulation time [150–153]. Therefore, they are frequently paired 
with other simulation techniques and experimental data [119,120,154,155]. With some re-
cent advances in this field such as coupling MD with machine learning and artificial en-
hancement approaches [156–160], metadynamics development [161], stochastic resetting 
algorithms [162], MD simulations could be sped up by several orders and become an 
emerging in silico technique to study the FSI phenomena in the near future. 

3.4. Lattice Boltzmann Method 
Lattice Boltzmann methods (LBMs) have emerged as a powerful numerical technique 

for studying fluid–structure interactions in microfluidics. LBMs describe the statistical be-
haviour of the particles in a fluid [163]. These methods discretise space and time into a 
lattice and simulate the movement and interactions of particles on the lattice. One ad-
vantage of LBMs is their ability to handle complex geometries and boundary conditions 
with parallel computing. LBMs have been widely used to simulate complex systems such 
as multiphasic fluids [164–166] and biological flows [167–169], and to study fluid–struc-
ture interactions [170–173] as well as rheological properties of red blood cells [174]. How-
ever, their application in micro elastofluidics remains unexplored, especially for FSIs. 

Figure 8D illustrates the common lattice structures used in LBM simulations, namely 
the D2Q9 (two-dimensional with 9 velocities) square, D3Q19 (three-dimensional with 19 
velocities), and D3Q27 (three-dimensional with 27 velocity vectors) cube lattice configu-
rations. These structures are frequently employed in LBM simulations [175]. We use the 
D2Q9 model as an illustration to simplify the discussion of LBMs. Similar information 
regarding other models is readily accessible in the existing literature. 

While considering the D2Q9 model, the following are the nine velocity vectors of 
lattice points [175]. 
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𝒄𝒄𝑖𝑖 =  �

0                                      
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𝜋𝜋, sin 𝑖𝑖−1
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𝜋𝜋� ∆𝒙𝒙

∆𝑡𝑡
            , 𝑖𝑖 = 1 − 4

√2 �cos 2𝑖𝑖−9
4
𝜋𝜋, sin 2𝑖𝑖−1

4
𝜋𝜋� ∆𝒙𝒙

∆𝑡𝑡
  , 𝑖𝑖 = 5 − 8

    (18) 

The main variable in an LBM represents the fraction of particles travelling with a 
lattice velocity, within lattice site 𝑥𝑥 and time 𝑡𝑡. For instance, 𝑓𝑓0 represents particles at 
rest as 𝒄𝒄0 = (0,0). Following a time step ∆𝑡𝑡, 𝑓𝑓𝑖𝑖(𝑥𝑥, 𝑡𝑡) moves to an adjacent lattice site 𝑥𝑥 +
𝑐𝑐0∆𝑡𝑡 along the lattice velocity 𝑐𝑐𝑖𝑖, a process known as streaming or propagation. 

At that site, collisions occur among particles moving from different directions, alter-
ing the original particle numbers in each direction. As an outcome, another propagation 
system is started when a fresh set of density distributions with different lattice velocities 
emerge from the collision site. This sequence of propagation and collision processes recurs 
iteratively in LBM simulations until a satisfactory result is obtained. 

The above dynamic process is mathematically formalised through the lattice Boltz-
mann equation (LBE) as [107]: 

𝑓𝑓𝑖𝑖(𝑥𝑥 + 𝑐𝑐𝑖𝑖∆𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) − 𝑓𝑓𝑖𝑖(𝑥𝑥, 𝑡𝑡) = 𝛺𝛺𝑖𝑖(𝑓𝑓)  (19) 

In this context, the collision operator 𝛺𝛺  is in charge of figuring out distribution 
changes when the collision occurs. The propagation process previously explained is rep-
resented on the left-hand side of the equation using the Bhathagar–Gross–Krook (BGK) 
single-time approximation to approximate the collision operator, which is an important 
simplification of the LBM. Initially introduced for the Boltzmann equation within the con-
tinuum kinetic theory by Bhatnagar et al. [176], the lattice BGK (LBGK) equation can thus 
be expressed as: 

𝑓𝑓𝑖𝑖(𝑥𝑥 + 𝑐𝑐𝑖𝑖∆𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) − 𝑓𝑓𝑖𝑖(𝑥𝑥, 𝑡𝑡) = −𝑓𝑓𝑖𝑖(𝑥𝑥,𝑡𝑡)−𝑓𝑓𝑖𝑖
𝑒𝑒𝑒𝑒(𝑥𝑥,𝑡𝑡)

𝜏𝜏
  (20) 

where collision operator 𝛺𝛺ᵢ is defined as: 

𝛺𝛺ᵢ = −𝑓𝑓𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛

𝜏𝜏
  (21) 

where 𝜏𝜏 is the BGK single relaxation time, and 𝑓𝑓𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛 is a non-equilibrium population that 

can be expressed as: 

𝑓𝑓𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑓𝑓𝑖𝑖(𝑥𝑥, 𝑡𝑡) − 𝑓𝑓𝑖𝑖

𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡), (22) 

where 𝑓𝑓𝑖𝑖
𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡) is the discretised population at an equilibrium state at any point 𝑥𝑥 and 

time 𝑡𝑡, which can be calculated by the discretisation of the Maxwell–Boltzmann equilib-
rium distribution [177] by the following polynomial: 

𝑓𝑓𝑖𝑖
𝑒𝑒𝑒𝑒 = 𝜌𝜌𝜔𝜔𝑖𝑖 �1 + 𝒖𝒖.𝒄𝒄𝑖𝑖

𝑐𝑐𝑠𝑠2
+ 1

2
�𝒖𝒖.𝒄𝒄𝑖𝑖
𝑐𝑐𝑠𝑠2
�
2
− 𝒖𝒖.𝒖𝒖

2𝑐𝑐𝑠𝑠2
�  (23) 

From the density distribution across the lattice, fluid density 𝜌𝜌 and velocity 𝒖𝒖 can 
be calculated as: 

𝜌𝜌 = ∑ 𝑓𝑓𝑖𝑖𝑖𝑖   (24) 

and 

𝜌𝜌𝒖𝒖 = ∑ 𝑓𝑓𝑖𝑖𝒄𝒄𝑖𝑖𝑖𝑖   (25) 

Here, 𝑐𝑐𝑠𝑠 is the lattice speed of sound, and 𝜔𝜔𝑖𝑖 is the lattice weight factor that depends 
on the lattice structure. For the D2Q9 model, 𝜔𝜔0 = 4/9 , 𝜔𝜔1−4 = 1/9 , 𝜔𝜔5−8 = 1/36 , and 
𝑐𝑐𝑠𝑠2 = ∆𝑥𝑥2 3∆𝑡𝑡2⁄ . By the Chapman–Enskog expansion, continuum macroscopic properties 
and momentum equation (Navier–Stokes Equation (2)) can be obtained from the above 
LBM discretised dynamics [178]. 

In the BGK single relaxation time, the kinematic viscosity υ and dynamic viscosity 
𝜇𝜇 can be calculated as: 
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𝜐𝜐 = (𝜏𝜏 − 1
2
)𝑐𝑐𝑠𝑠2∆𝑡𝑡  (26) 

and 

𝜇𝜇 = 𝑐𝑐𝑠𝑠2𝜌𝜌(𝜏𝜏 − ∆𝑡𝑡
2

)  (27) 

3.4.1. Force Application in FSIs 
Many microfluidic systems are subject to internal or external forces, including gravity 

[179], electric or magnetic forces [180,181], centrifugal force [182], and fluid–particle inter-
actions [183]. The impact of a body force is conceptualised physically as the addition of 
momentum to the field. Therefore, a force component post-collision [184] is typically in-
cluded in the LBE to account for this forcing influence on fluid dynamics. External forces 
are usually incorporated in the LB algorithm as a source term 𝑆𝑆𝑖𝑖  and a change to the 
equilibrium velocity 𝑢𝑢𝑒𝑒𝑒𝑒 as follows [185]: 

𝑓𝑓𝑖𝑖(𝑥𝑥 + 𝑐𝑐𝑖𝑖∆𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) − 𝑓𝑓𝑖𝑖(𝑥𝑥, 𝑡𝑡) = 𝛺𝛺𝑖𝑖∆𝑡𝑡 + 𝑆𝑆𝑖𝑖∆𝑡𝑡  (28) 

and 

𝑓𝑓𝑖𝑖(𝑥𝑥 + 𝑐𝑐𝑖𝑖∆𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) − 𝑓𝑓𝑖𝑖(𝑥𝑥, 𝑡𝑡) = −𝑓𝑓𝑖𝑖(𝑥𝑥,𝑡𝑡)−𝑓𝑓𝑖𝑖
𝑒𝑒𝑒𝑒(𝑥𝑥,𝑡𝑡)

𝜏𝜏
+ 𝑆𝑆𝑖𝑖∆𝑡𝑡  (29) 

The expression of 𝑆𝑆𝑖𝑖 and 𝑢𝑢𝑒𝑒𝑒𝑒 are not the same for all types of forcing schemes, for 
a physical force density 𝑭𝑭, multiple forcing schemes exist. This paper does not seek to 
cover all available forcing approaches. Instead, we highlight here the two prevalent forc-
ing approaches: Guo’s [186] and Shan-Chen’s [187]. 

In the Guo scheme, the force source term 𝑆𝑆𝑖𝑖 is expressed as: 

𝑆𝑆𝑖𝑖 = 𝜔𝜔𝑖𝑖 �1 − ∆𝑡𝑡
2𝜏𝜏
� �𝒄𝒄𝑖𝑖−𝒖𝒖

𝑐𝑐𝑠𝑠2
+ 𝒖𝒖.𝒄𝒄𝑖𝑖

𝑐𝑐𝑠𝑠4
𝒄𝒄𝒊𝒊� .𝑭𝑭  (30) 

and the equilibrium velocity becomes: 

𝒖𝒖𝑒𝑒𝑒𝑒 = 1
𝜌𝜌
∑ 𝑓𝑓𝑖𝑖𝒄𝒄𝑖𝑖𝑖𝑖 + 𝐹𝐹∆𝑡𝑡

2𝜌𝜌
  (31) 

In the Shan-Chen scheme, the source term is zero, 𝑆𝑆𝑖𝑖 = 0, but the equilibrium veloc-
ity changes, including the effect of the external force: 

𝒖𝒖𝑒𝑒𝑒𝑒 = 1
𝜌𝜌
∑ 𝑓𝑓𝑖𝑖𝒄𝒄𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑭𝑭

𝜌𝜌
  (32) 

These adjustments exhibit an increase in fluid momentum at a lattice node by 𝑭𝑭∆𝑡𝑡 
per time step while preserving the fluid density. The above schemes can be used in simu-
lating fully coupled fluid–structure interactions or one-way fluid–structure interactions 
by applying an external force through the lattice Boltzmann method [186,188–190]. 

3.4.2. Boundary Conditions 
In the LBM, substantial efforts are required to devise accurate and efficient boundary 

effects [191–193]. Most of the time, periodic boundary conditions are necessary at the inlet 
and outlet for simulating the fluid dynamics of repetitive or continuous systems. The pe-
riodic boundary conditions ensure consistent flow and properties by mimicking an infi-
nite system. These conditions are particularly useful in reducing computational complex-
ity and avoiding boundary-induced errors, making them vital for accurate and stable sim-
ulations. 

In micro elastofluidics, where the flexible nature of materials poses unique chal-
lenges, wall–fluid boundary conditions are critical for accurately modelling fluid dynam-
ics. Techniques such as simple bounce-back (SBB) [194] and mid-grid bounce-back [195] 
are used for rigid structures, while the modified bounce-back [194] and Immersed Body 
Method [196] are applied to flexible channels and deformable particles to effectively 
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simulate flow interactions at boundaries. In SBB, the particle simply reflecting, bounces 
backward to the initial node 𝑥𝑥𝑓𝑓 in the opposite direction. The after-collision population 
𝑓𝑓𝑖𝑖
∗ moving from a fluid node 𝑥𝑥𝑓𝑓 to a solid node 𝑥𝑥𝑠𝑠 in the SBB method is shown in Figure 

8E(i). The bounce-back population both in the bounce-back method or mid-grid bounce-
back method can be expressed as [195]: 

𝑓𝑓𝚤𝚤̅�𝑥𝑥𝑓𝑓, 𝑡𝑡 + ∆𝑡𝑡� = 𝑓𝑓𝑖𝑖
∗�𝑥𝑥𝑓𝑓, 𝑡𝑡�  (33) 

In this approach, the no-slip condition can achieve second-order accuracy when the 
physical wall is straight, parallel with one of the main lattice axes, and positioned midway 
between 𝑥𝑥𝑓𝑓 and 𝑥𝑥𝑠𝑠. 

For managing curved boundaries, the interpolated/extrapolated bounce-back 
method is the most popular enhancement that is applicable to the SBB technique [197,198]. 
This method considers the separation between the actual wall position and the lattice 
nodes, as shown in Figure 8E(ii). In this case, following the collision step, a hypothetical 
distribution is presumed to depart from the solid node 𝑥𝑥𝑠𝑠 and traverse toward the fluid 
node 𝑥𝑥𝑓𝑓 along a lattice direction and approximated as [199]: 

𝑓𝑓𝚤𝚤̅
∗(𝑥𝑥𝑠𝑠) = (1 − 𝑋𝑋)𝑓𝑓𝑖𝑖

∗�𝑥𝑥𝑓𝑓� + 𝑋𝑋𝑓𝑓𝑖𝑖
∗(𝑥𝑥𝑏𝑏)  (34) 

where the two terms on the right-hand side are the interpolation between 𝑥𝑥𝑓𝑓 and 𝑥𝑥𝑏𝑏 with 
𝑋𝑋 the contributing factor as defined by Filippova et al. [199]. 

In micro elastofluidics, addressing moving boundary conditions is important when 
dealing with dynamic interfaces or deformable structures. As discussed before, methods 
like modified bounce-back and immersed boundary are used for modelling the dynamic 
interactions between fluids and deformable structures. In the former method, the bounce-
back technique is modified to consider scenarios involving moving boundaries, whether 
they are due to externally imposed motion or the effect of a fully coupled fluid–structure 
interaction. The momentum transfer at a moving boundary is captured by incorporating 
a correction term in the SBB technique, introduced by Ladd et al. [194] as: 

𝑓𝑓𝚤𝚤̅�𝑥𝑥𝑓𝑓, 𝑡𝑡 + ∆𝑡𝑡� = 𝑓𝑓𝑖𝑖
∗�𝑥𝑥𝑓𝑓, 𝑡𝑡� − 2𝜔𝜔𝑖𝑖𝜌𝜌𝑤𝑤𝑐𝑐𝑖𝑖𝑢𝑢𝑤𝑤

𝑐𝑐𝑠𝑠2
  (35) 

where 𝑢𝑢𝑤𝑤  and 𝜌𝜌𝑤𝑤  are the wall velocity and density, respectively. For the Interpolated 
Bounce-Back (IBB) method, the correction term needs to be implemented on the segment 
of the population after the collision that moves into the wall boundary [200]. 

3.5. Immersed Body Method in FSIs 
Originally intended for deformable membranes inside a flow field, the immersed 

boundary method (IBM) was created by Peskin [196]. An integral relationship can be used 
to calculate the membrane force from membrane deformation. Membrane forces are trans-
ferred to the local fluid as part of fluid-membrane interactions and the membrane config-
uration was updated in response to the local flow velocity. This method has the advantage 
of avoiding problems related to shifting boundaries by allowing numerical techniques to 
solve fluid flow on a fixed, regular Eulerian mesh. In microfluidics, the immersed body 
approach has been effectively combined with a solver for both soft and rigid particles 
[201–204]. This technique has also been used to investigate the dynamics of RBCs in mi-
crocirculation [205,206]. 

When a fundamental relationship of solid boundaries is not available, alternative re-
lationships must be developed between the desired boundary velocity and the boundary 
force to stimulate solid particles and moving boundaries in a flow. Many approaches have 
been proposed. For example, Feng et al. [173] proposed modelling solid particles as de-
formable, using a spring force to represent interactions between each particle and a virtual 
reference point. This approach allowed the simulation of how particles elastically respond 
to displacement, aiding in understanding their behaviour under various stress conditions. 
Niu et al. [207] determined the boundary force through the momentum interchange of 
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particle distributions at the boundary. Dupuis et al. [208] used the LBM with the IBM for 
modelling the Navier–Stokes Equation (2). The boundary force was calculated by compar-
ing the desired boundary velocity with that computed without the boundary force to ac-
count for the no-slip boundary condition. 

The IBM uses the Lagrangian description for the immersed structures and the Eu-
lerian description for the fluid flow. This method takes into account the movement and 
distortion of immersed bodies while accurately representing fluid behaviour. In order to 
take into consideration the impact of immersed structures on surrounding fluids, this ap-
proach utilises forcing functions. These features allow forces to be transferred from the 
fluid to the immersed bodies, enabling the fluid to act on the structures and vice versa. A 
collection of Lagrangian points or markers positioned within the Eulerian grid serves as 
the representation of immersed boundaries. Interpolation techniques compute the influ-
ence of these markers on the surrounding fluid grid as shown in Figure 8F. 

Methods such as interpolation and projection are employed to transfer information 
between the Eulerian and Lagrangian domains, ensuring the accurate exchange of forces, 
velocities, and displacements between the fluid and structures. The typical IBM process 
involves several key steps. 

The first step is interpolating the velocity of fluid 𝒖𝒖(𝑋𝑋) at position 𝒙𝒙𝑖𝑖 of every par-
ticle mesh vertex 𝑖𝑖 in Figure 8F. The interpolated velocity 𝒙̇𝒙𝑖𝑖 is given by [87]: 

𝒙̇𝒙𝑖𝑖 = ∆𝑥𝑥𝑑𝑑 ∑ 𝒖𝒖(𝑋𝑋)𝛿𝛿(𝑋𝑋 − 𝑥𝑥𝑖𝑖)𝑋𝑋   (36) 

where 𝑑𝑑 is the number of spatial dimensions, ∆𝑥𝑥 is the lattice spacing, 𝛿𝛿 and is a dis-
crete delta distribution. After interpolating the fluid velocity, the force 𝒇𝒇𝑖𝑖 acting on each 
vertex 𝑖𝑖 is calculated. For soft particles, the forces resulting from the mesh deformation 
caused by moving vertices lead to the changing distance �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗� over time. Then, each 
vertex force 𝒇𝒇𝑖𝑖 is spread over the fluid, treating them as body forces 𝑭𝑭(𝑋𝑋) according to 
[87]: 

𝑭𝑭(𝑋𝑋) = ∑ 𝒇𝒇𝑖𝑖𝛿𝛿(𝑋𝑋 − 𝑥𝑥𝑖𝑖)𝑖𝑖   (37) 

After spreading the force as per Equation (37), the method updates the position and 
orientation of each particle based on the forces acting on it. The position of the vertex can 
be updated as: 

𝒙𝒙𝑖𝑖(𝑡𝑡 + ∆𝑡𝑡) = 𝒙𝒙𝑖𝑖(𝑡𝑡) + 𝒙𝒙𝚤𝚤̇ (𝑡𝑡)∆𝑡𝑡  (38) 

The shape of the discrete delta distribution 𝛿𝛿(𝑋𝑋 − 𝑥𝑥𝑖𝑖) is crucial, and a common sim-
plification is to use factorised 2D or 3D kernel functions. 

For soft particles, the vertex velocity is determined by interpolating the fluid velocity. 
Particle deformation is caused by moving vertices. For rigid particles, challenges involve 
satisfying rigidity conditions and no-slip conditions simultaneously. Various IBM algo-
rithms for rigid particles exist, such as direct-forcing, implicit IB, and multi-direct-forcing 
methods. 

When a system features symmetric or periodic spatial characteristics, symmetric or 
periodic boundary conditions can be effectively applied to reduce the computational do-
main and enhance efficiency. These conditions are particularly well suited to simulations 
using the IBM due to their adaptability with particle-based models. For periodic bounda-
ries, particles that exit the domain on one side are reintroduced from the opposite side, 
effectively simulating an infinitely extended horizontal domain with identical repeating 
units. Additionally, to implement a pressure gradient in a channel, the periodic boundary 
condition can be modified to account for a pressure (density) variation between the do-
main’s inlet and outlet [193]. 

The two main approaches for flow in geometries with streamwise periodic boundary 
conditions are (i) imposing a pressure drop ∆𝑝𝑝 on the periodic boundary condition and 
(ii) a body force 𝑭𝑭. The previous approach, which can be substituted by a constant body 
force |𝑭𝑭| = ∆𝑝𝑝 , works well in straight channels with an effective constant pressure 
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gradient. It is often preferable to apply an overall pressure drop ∆𝑝𝑝 between the inlet and 
outlet for other geometries. Then, taking into consideration any pressure variation 
brought on the particles, the LB algorithm adjusts for the proper pressure field inside the 
domain. Periodic boundaries are conceptually simple, but they have some difficulties as 
well. Controlling long-range particle–particle interactions across boundaries is necessary 
to simulate an infinite number of particles. This frequently involves sensitivity tests of 
selected channel length [209,210]. 

Creating more appropriate boundary conditions for complex geometries remains a 
difficult task. Distortion in the flow field can spread downstream in inertial flows. Any 
upstream influence is ignored when using a fully formed velocity profile at the inlet, 
which is not suitable for obtaining accurate results. Further research is required to facili-
tate practical and accurate LB simulations of microfluidic devices that cannot be approxi-
mated with periodically repeating boundary conditions. 

Choosing the right method depends on the specific requirements of the simulation 
scenario. These computational methods and their specific attributes are summarized in 
the Table 1, providing a comprehensive comparison to aid in the selection of the most 
appropriate method based on the diverse needs of different simulation scenarios. 

Table 1. Summary of computational methods and applications. 

Feature FEM BEM MD LBM IBM 

Significance 

• Uses discrete el-
ements 

• Solves field vari-
ables 

• Reduced dimen-
sions 

• Solves integral 
equations 

• Uses New-
ton’s laws of 
motion 

• Uses discrete 
particle distri-
bution func-
tions 

• Embeds the 
structure in a 
fluid mesh 

Primary Appli-
cations 

• Structural analy-
sis 

• Micropumps  
• Microvalves 

• Acoustic stream-
ing 

• Infinite domain 
flows 

• Biosensors 
• Drug deliv-

ery 

• Droplet gener-
ation 

• Multiphase 
flows 

• Immersed-
structure FSI 

• Cardiovascu-
lar simula-
tions 

Computational 
Domain 

• Discretises en-
tire volumetric 
domain 

• Discretises 
boundary sur-
faces only 

• Simulates in-
dividual par-
ticles at mo-
lecular scale 

• Based on a 
fixed grid of 
discrete points 

• Combines 
fluid mesh 
with non-con-
forming struc-
tures 

Strengths 

• Handles com-
plex geome-
tries/multiphys-
ics  

• Minimum dis-
cretisation re-
quirement 

• Faster for small 
boundaries 

• Detailed mo-
lecular-level 
information 

• Efficient for 
complex 
boundary con-
ditions 

• Scalable for 
large systems 

• Handles FSI 
without mesh 
conformity 

Weaknesses 

• Computation-
ally intensive for 
large/complex 
domains 

• Limited to de-
fined boundary 
problems  

• Computa-
tionally in-
tensive 

• Limitation in 
system size 

• Dependency 
on lattice reso-
lution 

• Effects on ac-
curacy near 
fluid–struc-
ture boundary 

Mesh  

• Highly mesh-de-
pendent 

• The accuracy in-
creases with 
finer mesh 

• Only the bound-
ary needs mesh-
ing 

• No tradi-
tional mesh 

• Particle den-
sity and in-
teraction 
range are 
crucial 

• Mesh (lattice)-
dependent 

• Less sensitive 
than FEM 

• Mesh-depend-
ent 

• Fluid mesh 
should be fine 
enough for ac-
curacy 
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Solvers • Direct 
• Iterative  

• Direct 
• Boundary inte-

gral  

• Verlet inte-
gration 

• Velocity Ver-
let leapfrog  

• Collision and 
streaming op-
erators 

• Direct forcing 
• Lagrangian–

Eulerian  

Software  
• ANSYS (2024R1) 
• Abaqus (2023) 
• COMSOL (6.2)   

• ANSYS (2024 
R1) 

• BEASY (2024) 
• Altair AcuSolve 

(2023) 

• LAMMPS 
(2024) 

• GROMACS 
(2023.3) 

• NAMD (3.0) 

• Palabos (1.4) 
• OpenLB (1.7) 
• LBMflow 

(1.0.1) 

• IBAMR 
(0.14.0) 

• MATLAB 
(R2023a) 

4. Applications 
Computational FSI methods are pivotal in micro elastofluidics, enhancing the design 

and functionality of devices such as microvalves, micropumps, and micromixers. These 
techniques enable the precise modelling of fluid and structural dynamics, critical for de-
vices that control and manipulate fluid flow at the microscale. FSI methods are also in-
strumental in biomedical applications, including cell separation and particle manipula-
tion. Additionally, in cardiovascular applications, FSI methods help to develop devices 
that match the biomechanical properties of blood and vascular tissues, significantly im-
proving the intended therapeutic purpose. This underscores the integral role of FSI in ad-
vancing micro-elastofluidic technology across various scientific and medical fields. 

4.1. Microvalves and Micropumps 
Microvalves and micropumps are the typical microfluidic components with strong 

FSIs. The FSI dictates how flexible membranes and channels within these devices respond 
to fluid pressure, ultimately shaping their ability to regulate and deliver tiny volumes of 
liquid in lab-on-a-chip and drug-delivery devices. Much work has been conducted on an-
alysing the intricate interplay between fluid forces and deformations of flexible structures. 
Researchers have proposed designs of microvalves and micropumps that achieve unpar-
alleled precision in flow control. 

Among the different types of microvalves, elastomeric membrane [211] microvalves 
are a prime example of where FSI plays a critical role [212]. The core principle behind 
these valves is the deformation of a flexible membrane in response to fluid pressure [213]. 
Active valves often utilise external actuation through FSI for precise flow control. Various 
actuation mechanisms have been proposed [214–218]. Passive valves harness flow forces 
through FSI to achieve remarkable self-regulation [219–221]. In a passive microvalve, the 
fluid pressure deforms the membrane, which in turn alters the flow resistance. This dy-
namic interplay between the fluid and the membrane allows the valve to maintain a con-
stant flow rate over a specific pressure range. 

Numerous models for passive check valves and passive regulating valves have been 
proposed. For instance, Nguyen et al. [222] utilised FSI to study passive valves and pro-
posed models for ortho-planar micro check valves for incorporation in polymeric micro-
devices (Figure 9A). These check valves efficiently prevented backflow and require an inlet 
pressure of less than 1 kPa to open. Ortho-planar designs provided enhanced sealing per-
formance, thanks to their parallel out-of-plane motion. Later, Kartalov et al. [223] pro-
posed a PDMS push-up valve utilising the pressure drop along the channel length and 
performed an FSI simulation to investigate the flow rate and threshold pressure (Figure 
9B). This model maintained a constant flow rate of 0.033 mL/min with a threshold pressure 
of 103 kPa. Yang et al. [224] designed a planar check valve and did an FSI study to model 
self-adaptive variable resistors to use in microfluidics models, Figure 9C. This valve de-
sign achieved a relatively high flow rate of 1.2 mL/min with a threshold pressure of 100 
kPa. In addition, Doh et al. [225] developed a passive parallel membrane valve designed 
for low-threshold pressure operation using the concept of FSI (Figure 9D). The valve con-
sisted of two control channels, two vertically oriented membranes, and a single fluidic 
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channel. The autonomous deflection of the membranes within the microchannel enabled 
the valve to achieve flow regulation at a pressure as low as 15 kPa. Moreover, Zhang et al. 
[226] utilised FSI on flow regulation in microfluidic environments and developed a unique 
parallel membrane valve featuring a stacked five-layer architecture (Figure 9E). This de-
sign, with two horizontal membranes enclosing a fluidic channel and sandwiched be-
tween control channels, achieved a remarkable flow rate of 2.79 mL/min with a low 10 kPa 
threshold pressure. Zhang et al. [221] achieved low threshold pressure in microfluidic 
high-throughput delivery systems and designed a passive valve for stable flow control. 
The valve utilised an ellipsoid control chamber and a dual micro-hole elastic membrane 
(Figure 9F). Membrane deflection in response to the pressurised flow through the micro-
holes dynamically modified the control chamber’s resistance. This self-regulating mecha-
nism maintained a constant flow rate regardless of inlet pressure changes. 

 
Figure 9. Microvalves and micropumps. (A) Ortho-planar micro check valves with different stiffness 
values [222]; (B) Poiseuille law pressure-drop self-regulating valve [223]; (C) self-adaptive planar 
check valve with flexible cantilever flap [224]; (D) parallel membrane with low threshold pressure, 
self-regulating valve [225]; (E) Stacked parallel membrane with low threshold pressure, regulating 
valve [226]; (F) ellipsoid control chamber auto-regulating valve [221]. 

A micropump is another crucial component of many microfluidic systems. Since their 
invention, micropumps have seen significant advancements, offering advantages such as 
compact size, portability, energy efficiency, a wide range of flow rates, affordability, and 
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potential for integration with other microfluidic components. Micropumps are typically 
constructed using micro-electromechanical systems (MEMS) techniques on biocompatible 
materials such as silicon, glass, or various polymers (such as polymethyl methacrylate 
(PMMA), PDMS, or SU-8 photoresist) [227,228]. Micropumps fall into two broad catego-
ries: (i) mechanical, using moving parts like diaphragms and valves, and (ii) non-mechan-
ical, which manipulates fluid flow through hydrodynamic [229], electroosmotic [230], or 
electrowetting [231] forces. In mechanical micropumps, fluid flow is pressurised by an 
external force, i.e., piezoelectric (PZT), electromagnetic (EM), electrostatic, and thermo-
pneumatic, applied to either fixed flexible membranes or moving structures. This force 
transfer to the fluid occurs through fluid–structure interaction. Much work has been done 
in harnessing and manipulating the pumping function at the microscale through FSI. 
Wang et al. [232] proposed a piezoelectric micropump utilising fixed-end PDMS valves 
with integrated compressible space. This micropump utilised a resonantly driven mem-
brane actuator, two fixed-end PDMS check valves for stability and reduced leakage, and 
strategically placed compressible spaces (Figure 10A). 

 
Figure 10. Pumping schemes. (A) Piezoelectric micropump utilising fixed-end PDMS valves with 
integrated compressible space: (i) dispensing mode, (ii) absorbing mode [232]; (B) magnetically ac-
tuated membrane micropump with in-plane check valves: (i) priming mode, (ii) pumping mode 
[233]; (C) electrostatically actuated micropump utilising four electrodes to induce peristaltic motion: 
(i) top-view, (ii) cross-sectional view [234]; (D) thermo-pneumatic micropump with a thin polyi-
mide membrane actuator: (i) cross-sectional view, (ii) top view [235]. 

A piezoelectric actuator deforms the pump membrane. This deformation of the mem-
brane affects the fluid inside the pump by changing the space it occupies, which increases 
or decreases the pressure. Essentially, as the membrane changes shape, it pushes on the 
fluid, helping to move it through the system. The micropump design relies on two key 
interactions: (i) the electromechanical interaction, where the piezoelectric sheet converts 
electric signals into a movement of the beam, and (ii) the fluid–solid interaction, where 
the pump diaphragm interacts with the working fluid. An alternating voltage causes the 
beam to deform, driving the membrane and, thus, the fluid flow. Simultaneously, the fluid 
resists the movement of the membrane. The reported micropump delivers a maximum 
flow rate of 105 mL/min and a maximum back pressure of 23 kPa under a 400 V sinusoidal 
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voltage at 490 Hz. The maximum power consumption at zero back pressure is approxi-
mately 42 mW. 

Ni et al. [233] introduced a magnetic micropump utilising FSI for easy fabrication and 
seamless integration into other microfluidic systems. The device featured in-plane check 
valves for flow control and a magnetically actuated membrane (Figure 10B). The deform-
able elastic membrane then interacted with the flowing fluid and, in turn, pressurised the 
fluid. Since actuation was controlled directly by an external magnetic field, enabling effi-
cient wireless operation, this method was ideal for various applications. Experimental re-
sults indicated that the micropump could deliver 0.15 µL/min at 2 Hz, offering 1 nL per 
stroke resolution, and worked against 550 Pa back pressure. 

Moreover, Lee et al. [234] fabricated an electrostatically actuated micropump incor-
porating FSI, utilising four electrodes to induce peristaltic motion (Figure 10C). In this 
study, the micropump made use of the electrostatic force to create bidirectional peristaltic 
motion. Its unique design featured a single deformable membrane with four movable pol-
yimide electrodes hence eliminating the need for valves. Actuation signals caused the 
membrane to bend in small, sequential steps, which increased the pressure of the fluid in 
stages. This action splits a single chamber into two, three, or four separate sections, allow-
ing for the controlled movement of the fluid within the device. Experiments showed that 
optimising the actuation signal dramatically increased the flow rate. With a basic signal, 
the pump achieved 38 µL/min, but an optimised signal boosted this to 136 µL/min (both 
at 90 V and 15 Hz). This represented a 3.6-fold improvement. Hamid et al. [235] modelled 
a cost-effective thermo-pneumatic micropump with a thin polyimide membrane actuator 
(Figure 10D). The model included a microheater, thermal cavity, and planar valve. This 
thermo-pneumatic micropump utilised thermal air expansion within a chamber to actuate 
a thin polyimide membrane. The membrane movement then interacted with the fluid and 
hence created pressure fluctuations accordingly. This device effectively controlled fluid 
on the picolitre to nanolitre scale, making it suitable for applications such as artificial kid-
neys and drug delivery systems, and was both simple and economical to fabricate. 

4.2. Cell and Particle Manipulation 
Cell sorting is a laboratory technique for isolating a specific cell type from a mixed 

population. Isolation criteria include physical parameters (size, morphology), cell viabil-
ity, and the presence of specific intracellular or extracellular proteins [236]. Purified cells 
obtained through sorting are essential tools for research, diagnostic procedures, and cell-
based therapies. Cell sorting encompasses a broad range of established techniques, em-
ploying both active and passive mechanisms [237]. Active sorting utilises external fields 
(electric, acoustic, magnetic, or optical) to manipulate cell trajectories. Passive systems pri-
marily leverage inertial forces, filtration, and cell-surface adhesion for purification. Un-
derstanding FSIs in both cell–fluid and fluid–channel interactions is crucial for optimising 
and designing cell sorting devices. Extensive experimental works have been conducted to 
utilise FSI phenomena for cell sorting and manipulation. However, numerical simulations 
are vital to fully comprehend these FSI phenomena. Numerical modelling of cell dynamics 
complements experimental approaches, enabling the in-depth study of fluid–particle in-
teractions. Accurately simulating these dynamic processes presents challenges due to the 
complexity of FSI coupling, cell mechanics, and the computational cost of simulating cell–
cell interactions at scale. 

Sun et al. [238] developed an LBM model to simulate blood flow in realistic micro-
vascular networks and the separation of different types of cells (Figure 11A). This ap-
proach allowed for the detailed analysis of the FSI between blood cells and the vessel wall. 
This model treated blood as a suspension of particles (red blood cells [RBCs] and white 
blood cells [WBCs]) within the plasma, explicitly incorporating cell–cell and cell–wall in-
teractions. The LBM approach allowed the simulation of RBC and WBC interactions as the 
cells flowed through a microvascular network. This approach enabled (i) the quantifica-
tion of forces exerted between RBCs and WBCs, the tracking of trajectories of individual 
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cells, (ii) the analysis of pressure variations within the network due to cellular traffic, and 
(iii) the evaluation of forces experienced by the vessel walls at any location. Simulations 
demonstrated that the vessel curvature and junctions increased the apparent viscosity and 
induced stress perturbations near stagnation points. The results suggested a potential link 
to atherogenesis at stagnation points and may also significantly influence our understand-
ing of endothelial biology and its role in atherosclerosis formation. 

Mao et al. [239] conducted computational modelling of particle sorting, specifically 
addressing FSI, for high-throughput hydrodynamic size-based sorting of solid micropar-
ticles in microchannels (Figure 11C(i)). With this model, high-resolution separation was 
achieved by combining the cross-stream inertial migration of particles with circulatory 
flows induced by periodic diagonal ridges on opposite channel walls. A hybrid approach 
was employed to model the multi-component system of a fluid-filled ridged microchannel 
and various-sized solid particles. This approach integrated the LBM for fluid dynamics 
with a lattice spring model (LSM) for modelling solids. The FSI was captured through 
appropriate boundary conditions at the solid–fluid interface. Simulations proved to be 
crucial for designing the ridged microchannel. Optimisation for separating neutrally 
buoyant microparticles by size relied heavily on understanding the complex FSI within a 
microchannel. Figure 11C(ii) shows the results of this study. The geometry of the micro-
channel induced unique fluid flow patterns, and the resulting FSI between these patterns 
and the particles was the key to high-resolution separation. 

 
Figure 11. Cell separation and micromixers. (A) Illustration of considering RBCs and WBCs as sus-
pended particles in plasma to capture fluid–particle and fluid–wall interactions [238]; (B) RBC dis-
cretisation to investigate the change in deformability of cells caused by malaria parasites, repro-
duced with permission from Hosseini et al. [240]; (C) (i) setup for particle sorting in microchannels, 
(ii) particle separation, reproduced with permission from Mao et al. [239]; (D) DLD device for 
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separating CTCs within blood stream [241]; (E) mixing with magnetic actuated artificial cilia [242]; 
(F) passive mixing with flexible baffles [243]. 

Khodaee et al. [241] carried out a numerical FSI study of the fluid–particle interaction 
in a deterministic lateral displacement (DLD) microfluidic device for the effective separa-
tion of circulating tumour cells (CTC) in bloodstreams. Numerical simulations, incorpo-
rating FSIs using the FEM to model deformable cell behaviour, guided the design of a 
typical DLD array for separating CTCs and leukocytes (white blood cells) under various 
flow conditions. Figure 11D illustrates the discretisation of this method. This study fo-
cused on how coupled FSI phenomena, specifically related to flow conditions, stress, and 
cell deformability impacted cell separation in DLD devices. This model provided essential 
data for optimising DLD devices, enhancing efficiency, and protecting cell viability. The 
model quantified the cellular stress experienced during separation and mapped the dis-
tribution of effective stress at peak deformation. Moreover, Gul et al. [244] presented a 
computational model using a two-way coupled bio-magnetic fluid dynamics approach to 
simulate targeted magnetic drug delivery (TMDD), leveraging magnetic nanoparticles 
(MNs) coated with anticancer drugs for optimised navigation within blood vessels. The 
model successfully incorporated active magnetic particle manipulation, enhancing the 
precision and efficacy of drug delivery to targeted areas. 

FSI also plays a fundamental role in accurately simulating cell deformations within 
a complex environment. Cells are not rigid bodies and respond dynamically to the fluid 
forces surrounding them. These forces can cause cells to stretch, compress, and change 
shape. In turn, deformed cells alter the flow field around them. FSI models are essential 
for capturing this intricate interplay. An FSI simulation provides realistic predictions of 
how cells deform under various conditions. This has far-reaching implications in biomed-
ical research, understanding disease processes where cell deformation plays a role. For 
instance, Hosseini et al. [240] carried out an FSI analysis on RBCs and investigated the 
change in the deformability of cells caused by malaria parasites. Numerical simulations 
incorporating FSIs were employed to investigate this phenomenon. The cell membrane 
was represented as a collection of interconnected, elastic particles (Figure 11B). The cyto-
sol was modelled as a Newtonian fluid using smoothed particle hydrodynamic techniques 
(SPH). More importantly, the malaria parasite was treated as a rigid structure, capturing 
its influence on the overall behaviour of the cells. Healthy RBCs are remarkably flexible, 
but the presence of the rigid malaria parasite within the cell significantly increases their 
stiffness. In response to the fluid forces present in the bloodstream, the deformability of 
infected cells declines. These findings underscore the potential of using cell deformability 
as a diagnostic marker and highlight the value of FSI simulation in understanding disease-
induced cellular changes. 

4.3. Micromixers 
Mixing fluids at the microscale presents unique challenges and opportunities. Due to 

the dominance of laminar flow and the lack of turbulence at the microscale, traditional 
mixing strategies often become ineffective. This challenge has spurred the development 
of innovative microfluidic mixing approaches, relying on strategies such as chaotic advec-
tion, diffusion enhancement, or the integration of active micromixers. Micromixers are 
broadly categorised as active and passive types [245]. Active micromixers enhance mixing 
by introducing external perturbations that disrupt the typically laminar flow regime. 
Methods include pressure-driven actuation (e.g., pulsatile flows), electrokinetic manipu-
lation (e.g., electroosmotic flow), magnetic actuation (e.g., ferrofluid mixing), or acoustic 
streaming [246–252]. These techniques offer rapid mixing, tunability, and adaptability but 
come with increasing system complexity. In contrast, passive micromixers rely on the mi-
crochannel geometry to promote mixing. Complex channel geometries induce chaotic ad-
vection, increasing interfacial contact area through lamination, splitting, or droplets [253–
258]. Passive mixers excel in simplicity, cost-effectiveness, and minimal sample 
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perturbation, but may have longer mixing times and less adaptability than their active 
counterparts. 

FSI plays a vital role in both active and passive micromixers. In active micromixers 
based on FSI, flexible elements interact with the fluid flow, creating complex patterns that 
disrupt the laminar flow for fast and efficient mixing. This FSI approach allows for cus-
tomised flow control, works with various fluids, and potentially uses less power than 
other active mixing methods. Examples include employing deformable membranes to cre-
ate chaotic advection or integrating oscillating microstructures to induce localised mixing 
zones. While less common than active FSI micromixers, passive designs can also exploit 
FSI to enhance mixing. These mixers often incorporate flexible or deformable elements 
within the microchannel that respond to the inherent fluid forces. Examples include flex-
ible micro-posts that sway in response to flow, membranes that deform under pressure, 
and integrated microvalves whose operation is triggered by fluid forces. 

Much work has been conducted on optimising the design of micromixers using FSI-
based numerical simulation. For example, Lin et al. [242] carried out an FSI analysis for 
precise flow manipulation in a micromixer using magnetic actuation. The team employed 
microstructures with embedded magnetic particles (Figure 11E). A CFD approach utilis-
ing FSI modelling was employed to simulate the flow patterns generated by the actuated 
structures. The model revealed the impact of different actuation modes on mixing perfor-
mance. The “zigzag” pattern proved to be superior in achieving rapid and complete mix-
ing. A further analysis demonstrated how these structures disrupted and blended the 
flow, with vorticity calculations pinpointing regions of high vorticity in the flow field. The 
enhanced vorticity strongly correlated with improved mixing. The study featured the 
power of combining experimental and numerical analyses to understand the FSI mecha-
nisms responsible for effective flow mixing. These findings hold significant value for de-
signing future high-performance micromixers, where speed and thorough mixing are es-
sential. Moreover, Talebjedi et al. [243] exploited the FSI phenomenon in passive micro-
mixers using flexible baffles (Figure 11F). This research explored the use of deformable 
baffles in the mixing process, aiming to improve performance compared to traditional 
rigid baffles. Modelling the FSI provided insight into how deformable baffles changed 
shape under fluid pressure, and how this affected flow. The results showed a significant 
reduction in pressure drop with deformable baffles, indicating less stress on mixed mate-
rials. More importantly, this improvement was achieved with only a minor decrease in 
mixing efficiency as compared to rigid baffles. This suggests that deformable baffles offer 
a promising way to optimise mixing processes, where reducing stress on the materials 
being mixed is vital. 

4.4. Modelling Cardiovascular Systems 
In the realm of micro elastofluidics, computational methods for FSI unlock a deeper 

understanding of the complex interplay between biological fluids and the flexible tissues 
they encounter. The complex dynamics of blood flow, coupled with the flexible nature of 
heart valves and arterial walls, necessitate FSI simulations for a comprehensive analysis 
of the cardiovascular system. FSI models provide critical insights into heart valve function, 
including leaflet deformation, flow patterns, and stress distribution, leading to better di-
agnostics for heart diseases and improved designs for prosthetic replacements [259–263]. 
Similarly, FSI models applied to artery flow provide insights into the development of ar-
terial diseases like atherosclerosis, uncovering potential risks for aneurysm formation, 
and contribute to optimising medical devices such as stents [46,264–267]. 

Heart valves play a critical role in maintaining blood flow direction. Artificial valves 
are treatment options, but their design and performance require careful analysis. Laha et 
al. [259] investigated bi-leaflet mechanical heart valve dynamics through FSI modelling 
with Smoothed Particle Hydrodynamics (SPH). Figure 12 illustrates the schematic model. 
The team explored a method for simulating a bi-leaflet heart valve using SPH open-source 
code. By incorporating the FSI, the SPH technique analysed hemodynamic abnormalities 
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associated with valve dysfunction. The study considered normal and abnormal flow be-
haviour, valve movement under blockage scenarios, and potential risks associated with 
blockages. The findings demonstrated the effectiveness of this SPH/FSI approach for cap-
turing the dynamic behaviour of bi-leaflet valves. The versatility of this computational 
model suggests its potential application to more complex cardiovascular problems. 

 
Figure 12. Bi-leaflet mechanical heart valve dynamics through FSI modelling with Smoothed Parti-
cle Hydrodynamics (SPH); (A) illustration of mechanical heart valve; (B) opening and closing posi-
tion of valve; (C) illustration of smoothed particles for simulation; (D) inlet velocity profile to mimic 
the real pulse; (E) simulation results. Reproduced with permission from Laha et al. [259]. 

Sodhani et al. [260] carried out an FSI study on an artificial aortic heart valve that was 
reinforced with textiles. In this study, an in silico FSI model was developed using the im-
mersed boundary method to mimic the in vitro experiment. The model assessed the geo-
metric orifice area and flow rate over a single cycle while also incorporating the material 
properties of the implant. The model employed fixed boundary conditions for the struc-
tural part. This involved fixing the bottom and stitched regions of the device in all direc-
tions, preventing movement in those areas. For the fluid domain, the transvalvular pres-
sure was incorporated as a boundary condition at the inlet and a zero-pressure condition 
at the outlet. The transvalvular pressure was measured in the corresponding in vitro test. 
Figure 13 shows the model of the heart valve. The FSI simulation provided valuable in-
sights into device performance, i.e., pressure distribution, velocity field, recirculation 
zones, vortices, and potential leakage points. This work demonstrated the effectiveness of 
FSI simulations for validating material property determination techniques and predicting 
the kinematics and flow behaviours of the device. 
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Figure 13. An artificial aortic heart valve. (A) Effect of asymmetry on valve closure (right) and com-
parison with a similar tex-valve (left); (B) illustration of test setup for FSI simulations; (C) simulation 
results. Reproduced with permission from Sodhani et al. [260]. 

Arterial diseases, including atherosclerosis and aneurysms, pose significant health 
risks due to their potential to cause serious cardiovascular events such as heart attacks and 
strokes. By accurately simulating the dynamic interactions between blood flow and arte-
rial walls, FSI models provide invaluable insights into mechanical forces that contribute 
to disease progression. For example, Valente et al. [268] carried out the numerical investi-
gation of an Ascending Thoracic Aortic Aneurysm (ATAA) through FSI simulations using 
the open-source software package SimVascular. Figure 14A,B illustrate the mesh model 
and results, respectively. The simulations were based on patient-specific geometric mod-
els reconstructed from Computed Tomography (CT) scans. The analysis incorporated spe-
cific outlet conditions and temporal flow variations at the model inlet. By assigning pre-
stress, the aorta model accurately reflected the in vivo stress state during the cardiac cycle. 
The process began with a CFD analysis on the fluid domain, followed by a structural anal-
ysis in the solid domain, using the pressures from the CFD phase as boundary conditions. 
The results from both CFD and Computational Structural Mechanics (CSM) were used as 
initial conditions for further analysis. The hemodynamic and structural behaviour of an 
ATAA was studied, focusing on the velocity, displacement magnitudes, and wall shear 
stress distribution during the first cardiac cycle. The results confirmed the effectiveness of 
the simulation in capturing the complex dynamics of an ATAA, highlighting its potential 
for enhanced precision in biomechanical assessments. 



Micromachines 2024, 15, 897 32 of 42 
 

 

 
Figure 14. Numerical investigation of an Ascending Thoracic Aortic Aneurysm (ATAA) through FSI 
simulations. (A) Mesh discretisation of patient-specific geometric ascending thoracic aorta model 
reconstructed from CT scans; (B) simulations results. (i) wall shear stress distribution over the do-
main, (ii) Velocity magnitude distribution over the domain, (iii) Displacement magnitude distribu-
tion over the domain. Reproduced with permission from Valente et al. [268]. 

5. Perspectives 
The exploration of FSIs in microfluidics using both continuum and particle compu-

tational approaches presents a dynamic and promising research area. Computational FSI 
and the deformable nature of structures in microfluidic devices have created new oppor-
tunities for applications across diverse fields, including biotechnology, healthcare, and 
soft robotics. However, the selection of an appropriate computational method depends 
heavily on the specific requirements and constraints of the application. Among the com-
putational methods, the FEM is highly valued for its robust handling of complex geome-
tries and diverse material properties, making it ideal for scenarios involving significant 
structural deformations. However, the computational cost makes the FEM less efficient 
for fluid dynamics problems as compared to other methods. The BEM offers an advantage 
for fluid flow around structures by reducing the problem dimensionality since it only re-
quires discretisation at the boundaries. The dimension reduction leads to a substantial 
saving of computational cost. However, the BEM struggles with nonlinear properties and 
dynamically changing domains. In contrast, the LBM is celebrated for its simplicity and 
efficiency in handling fluid flows and multiphase phenomena, easily integrated with com-
plex boundary conditions. However, coupling the LBM effectively with solid mechanics 
models remains challenging. MD provides exceptional detail at the molecular level, per-
fect for analysing microscale interactions within fluids and at fluid–solid interfaces. Yet, 
its practical application is typically limited to small systems due to the high computational 
demands. On the other hand, the IBM is particularly effective for problems where fluid 
and structure are dynamically interlinked, such as in situations with complex and moving 
boundaries, when structures within the fluid change position or shape. Despite its versa-
tility, the IBM requires careful calibration to accurately capture the dynamics of the fluid–
structure interface. 

Looking ahead, the potential for computational FSI in micro elastofluidics is vast, 
with opportunities to combine the strengths of the above methods through hybrid mod-
elling approaches. For instance, integrating the LBM’s fluid dynamics capabilities with 
the FEM’s structural dynamics expertise could yield an approach that leverages the 
strengths of both LBM and FEM, offering more accurate and comprehensive simulation. 
As computational resources continue to expand and algorithms evolve, the scope for real-
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time simulations and enhanced multiscale modelling will broaden, paving the way for 
more precise and efficient designs. 

Real-time simulation capabilities will pave the way for adaptive microfluidic systems 
that dynamically respond to environmental changes, ideal for biomedical implants and 
wearable applications. The integration of Artificial Intelligence (AI) will streamline the 
design process, optimise simulation parameters, and predict system behaviours under di-
verse conditions, reducing development time and improving device efficacy. Moreover, 
the focus on sustainable technologies will encourage the integration of biodegradable ma-
terials into micro elastofluidic devices, necessitating robust FSI methods to assess their 
performance. Personalised medicine will also benefit from FSI-optimised devices tailored 
to individual physiological conditions, optimising diagnostic and therapeutic outcomes. 
Overall, these recent advances will significantly enhance the scope and effectiveness of 
micro elastofluidic applications, transforming both technological capabilities and their so-
cietal impact. 
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Abbreviations 
2D Two-dimensional 
3D Three-dimensional 
AI Artificial Intelligence 
ATAA Ascending Thoracic Aortic Aneurysm 
BEM Boundary element method 
BGK Bhathagar–Gross–Krook 
CFD Computational fluid dynamics 
CS-FEM Cell-based Smoothed Finite Element Method 
CSM Computational Structural Mechanics 
CT Computed Tomography 
CTCs Circulating tumour cells 
DLD Deterministic lateral displacement 
EM Electromagnetic 
FEM Finite Element Method 
FSI Fluid–structure interaction  
IBM Immersed boundary method 
IPMF Inertial Particle Microfluidics 
LBE Lattice Boltzmann equation 
LBGK Lattice Bhathagar–Gross–Krook 
LBM Lattice Boltzmann method 
LSM Lattice spring model 
MD Molecular dynamics 
MEMS Micro-electromechanical systems 
PDEs Partial differential equations 
PDMS Polydimethylsiloxane 
PMMA Polymethyl methacrylate 
PZT Piezoelectric 
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RBCs Red blood cells 
SBB Simple bounce back 
S-FEM Smoothed Finite Element Methods 
SPHs Smoothed Particle Hydrodynamics  
WBCs White blood cells 
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