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ABSTRACT 

Context. Ratoon stunting disease (RSD), caused by Leifsonia xyli subsp. xyli (Lxx), poses a significant 
economic threat to sugarcane (Saccharum hybrid) worldwide. RSD is hard to manage due to its 
elusive visible symptomology and disease rating of cultivars is subjective. Aims. We aimed to 
develop a sensitive, rapid, and quantitative Lxx diagnostic method able to correlate Lxx titre and 
disease resistance rating of sugarcane cultivars. Methods. A Lxx diagnostic method was developed 
using heat lysis-based reagent-free DNA isolation from xylem sap followed by loop-mediated 
isothermal amplification (LAMP)-based colorimetric and fluorescence quantification within a 
single microcentrifuge tube. Bacterial titre was then statistically correlated with industry-agreed 
disease resistance ratings for key sugarcane cultivars. Key results. The diagnostic was highly sensitive 
(1 cell/μL) and reproducible (%s.d. = <5%, for n = 3), and showed excellent linear dynamic range 
(i.e. 10 pM−1 aM  or 107−100 copies/μL, r = 0.99) for quantitative Lxx detection. LAMP quantifications 
were completely concordant with quantitative polymerase chain reaction quantification from the 
same samples. Additionally, a strong correlation was determined between the detected quantitative 
bacterial titres and known cultivar disease resistance ratings (r = 0.82, n = 10, P < 0.001). Conclusion. The 
novel LAMP-based Lxx diagnostic was validated as a fast, simple, and relatively cost-effective means of 
RSD resistance rating, making it a reliable contribution towards RSD management. Implications. The 
development of this diagnostic tool provides a practical solution for accurately measuring Lxx titre and 
assessing disease resistance in sugarcane plants, aiding in effective risk management of RSD spread, and 
mitigating its economic impact on sugarcane crops worldwide. 

Keywords: diagnostic method, disease resistance ratings, isothermal amplification, nucleic acid 
isolation, quantitative detection, ratoon stunting disease, screening for disease resistance, sugarcane. 

Introduction 

Ratoon stunting disease (RSD) is an insidious and damaging sugarcane disease, causing 
significant production losses of 12% to 37% under normal growing conditions and up to 60% 
under water stress (Bailey and Bechet 1997). Following its first report in Queensland, 
Australia in 1944, RSD has affected the global sugarcane industry (Gillaspie 1989; Young 
and Brumbley 2004). RSD is caused by a gram-positive, xylem-inhabiting, coryneform 
bacterium Leifsonia xyli subsp. xyil (Lxx), and the resulting disease is challenging to 
diagnose due to the lack of specific external symptoms and the ambiguous nature of internal 
symptoms (Davis et al. 1980). In addition, growers frequently attribute poor ratooning 
performance to other factors like soil-borne fungi, nematodes, or nutrient stress (Magarey 
1994; Young 2018). Once detected, managing RSD involves using clean seed cane, farm 
hygiene, and removing potential bacterial reservoirs like volunteer crops before replanting, 
and planting of moderately resistant varieties to reduce the risk of potential disease spread 
where best practice management is not possible. Clean and disease-free materials are 
achieved through the use of hot water, antibiotics, moist air, and aerated steam treat-
ments (Benda and Ricaud 1978; Gul and Hassan 1995). However, heat treatment often fails 
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to completely eradicate Lxx, leading to the spread of the 
disease in so-called ‘pathogen-free’ nurseries from which 
planting material is sourced (Damann and Benda 1983). 

Therefore, the strategy to manage RSD in sugarcane crops 
involves a combination of planting resistant varieties where 
available, maintaining farm hygiene, and planting disease-
free seed cane (Comstock 2002; Hoy 2017). Accordingly, RSD 
resistance has been a key sugarcane breeding goal since the 
early 2000s (Comstock et al. 2001). Although some variability 
in disease reaction among sugarcane germplasms offers hope 
for selecting this crucial trait (Roach 1988, 1992; Roach and 
Jackson 1992; Croft and Johnson 2013), most currently 
employed cultivars have low to no RSD resistance, and to 
date, breeding for stable resistance has not been achieved 
(Young 2016; Bhuiyan et al. 2021). This may be due to the 
quantitative and recessive nature of the resistance trait 
(You et al. 2021) and/or the genetic bottlenecks that have 
been created through selective breeding strategies directed 
primarily at agronomic and elevated brix levels, and with 
the unintentional exclusion of disease resistance traits (Kull 
et al. 2003; Li et al. 2022). To address this, novel resistance 
sources must be sought from genetically diverse germplasms, 
akin to reintroducing disease resistance in wild relatives of 
sugarcane and related crop species such as Napier grass 
(Wamalwa et al. 2017), barley (Li et al. 2022) and wheat 
(Sharma et al. 2021). To enable this, and for daily disease 
management, a fast and accurate diagnostic tool that can 
also be applied to identify resistant germplasm in large-scale 
screening programs would be highly valuable. Previously, 
Steindl (1974) had noted that plants with a lower bacterial 
colonisation within the vascular bundles were more resistant 
to RSD, and this was also observed by Teakle et al. (1978). 
Although a direct correlation between Lxx titre and resistance 
level has been established, the variations in sensitivity among 
current methods make it difficult to assign reliable resistance 
ratings. The application of a fast, precise, and sensitive Lxx 
detection method could streamline the evaluation of resistance 
during cultivar selection processes, providing invaluable assis-
tance in managing RSD effectively on farms (Zhao et al. 2015). 

To date, several methods have been reported for 
identifying Lxx and determining RSD ratings in sugarcane 
varieties. For this, Gillaspie and Teakle (1989) compared the 
yields among RSD-infected and RSD-free trials to evaluate 
RSD reactions. Subsequently, Roach and Jackson (1992) 
scored RSD reactions on a scale (0–9) based on the amount 
of Lxx bacteria detected in sugarcane clone sap via phase 
contrast microscopy (PCM). Then, Gagliardi and Camargo 
(2009) evaluated RSD reactions by measuring field yield loss 
with or without RSD inoculation and categorised germplasm 
as susceptible, moderately resistant, or tolerant. To increase 
the throughput, Harrison and Davis (1988) developed a tissue 
blot-enzyme immunoassay (TB-EIA) to estimate Lxx-infected 
vascular bundles. Davis et al. (1994) then improved the 
TB-EIA for large-scale screening of genotypes for RSD 
resistance, which proved more accurate than PCM. Following 

this, Croft (2002) devised an evaporative-binding enzyme-
linked immunosorbent assay (EBEIA) to rate sugarcane 
cultivars for RSD resistance, demonstrating significant varia-
tions among cultivars in bacterial titres. Although correlation 
between titre and disease rating was determined, these 
techniques were limited by lack of sensitivity, and were labour 
and time-intensive (Chakraborty et al. 2024). Subsequently, 
specific and sensitive Lxx detection and quantification 
methods, including polymerase chain reaction (PCR) and 
fluorescence-based quantitative real-time PCR (qPCR), were 
developed and applied to predict RSD disease rating (Deng 
et al. 2004; Grisham et al. 2007; Que et al. 2008; Carvalho 
et al. 2010; Young et al. 2016; Ngo et al. 2023). Despite 
their sensitivity (104 to 101 cells/μL), these methods have 
been underutilised due to their complexity in application, 
cost, lack of portability, and the requirement of labour-
intensive DNA extraction and purification procedures (Ghai 
et al. 2014; Chen et al. 2018). To overcome these obstacles, a 
simpler, cost-effective, and user-friendly method is needed for 
Lxx diagnostic quantification that is correlated to disease 
rating and requires little to no chemical reagents for sample 
processing, suitable for growers and extension workers with 
minimal training. 

To simplify and speed up an Lxx diagnostic, a field-
applicable reagent-free heat-induced DNA isolation method 
for efficient release of Lxx DNA may be assessed, bypassing 
multistep processing, and using commercial kits. Indeed, 
high temperatures are known to degrade microorganism cell 
walls, releasing nuclear content (Goodwin and Lee 1993; 
Lou et al. 1993; Strus 1997; Jose and Brahmadathan 2006; 
Merk et al. 2006; Umer et al. 2021). Specifically, Jose and 
Brahmadathan (2006) found 94°C for 2 min sufficient for 
bacterial cell wall denaturation. This technique has been used 
previously to release bacterial nucleic acid from various 
biological samples (Dashti et al. 2009; Ghai et al. 2014; 
Smyrlaki et al. 2020; Umer et al. 2021). Combining this 
method with loop-mediated isothermal amplification (LAMP) 
offers a simple method for Lxx detection and quantification. 
LAMP is known for its simplicity, cost-effectiveness, and 
rapidity in detecting plant pathogens, even within crude 
extracts, and is preferred over PCR-based methods, which 
may be hindered by amplification inhibitors (Tsai et al. 2009; 
Francois et al. 2011). To date, several Lxx LAMP protocols 
have been developed (Liu et al. 2013; Ghai et al. 2014; 
Naidoo et al. 2017; Wu et al. 2018). However, none have been 
used to correlate Lxx titre with cultivar for RSD disease 
resistance rating. Therefore, this study aimed to (i) develop 
a novel LAMP-based method combined with a rapid and 
reagent-free Lxx DNA isolation technique for in-situ detection 
and quantification of Lxx bacteria from sugarcane sap 
samples, (ii) validate the quantitative accuracy of the Lxx 
diagnostic protocol via qPCR, and (iii) apply the developed 
two-stage diagnostic to correlate with pre-established RSD 
ratings in a range of sugarcane cultivars of known 
susceptibility/resistance. 
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Materials and methods 

Source and production of inoculum 

Leifsonia xyli subsp. xyli (Lxx) was isolated from naturally 
infected sugarcane plants grown at the Sugar Research 
Australia (SRA), Woodford Pathology Research Station, 
Woodford, Queensland, Australia (S 26.93°, E 152.78°). For 
this, stalks were cut at the base using sterilised secateurs and 
scrubbed to eliminate any extraneous material. Afterward, a 
small air compressor (Boss Air Suspension, Queensland, 
Australia) with an attached soft rubber cup was used to 
provide positive pressure to the stalk from the basal nodal 
and internodal regions to push the sap out of the vascular 
bundles. The sap was collected in 15 mL centrifuge tubes 
and immediately kept on ice during transport to Griffith 
University, Nathan campus. The extracted sap was then 
filtered using a 0.2 μm syringe fitted filter and aliquoted into 
1.5 mL microcentrifuge tubes. For Lxx culturing, 2 mL of the 
sap was also added to 100 mL of modified liquid broth S8 
medium and incubated at 28°C for 4 weeks with gentle 
shaking at 200 rpm in the dark according to Sugar Research 
Australia’s (SRA) industry protocol (Davis et al. 1980; 
Brumbley et al. 2002). 

Sugarcane leaf scald (LS) disease-causing bacteria, 
Xanthomonas albilineans (Xalb), were used as a negative control. 
Xalb strain 3/14/9 was obtained from SRA, Indooroopilly 
Research Station, Queensland, cultured in modified Wilbrink’s 
broth media and incubated at 28°C for 5 days according to the 
industry protocol (Dawson 1957). The culture flasks were 
incubated in temperature-controlled shakers with gentle 
shaking at 250 rpm until the OD600 reached approximately 
0.5, where Lxx and Xalb cell densities were calculated 
to be 4 × 108 cfu/mL and 16 × 108 cfu/mL, respectively 
(Monteiro-Vitorello et al. 2004; Mira et al. 2022). Each 
measurement was conducted in triplicate for three repeated 
experiments. 

Establishment of field trial, inoculation, and 
planting 

An RSD field trial was established at SRA’s Pathology Research 
Station, Woodford, Queensland, Australia in September 2020. 
Ten sugarcane genotypes with known disease ratings for 
RSD (Ngo et al. 2023) were sourced from a disease-free 
propagation block in Kallangur (S 27.235°, E 153.01°), 
Queensland, approximately 50 km south of SRA’s Pathology 
Research Station. Stalks were cut into one-budded setts using 
an electric saw and washed in tap water to remove dirt and 
debris (Table 1). Sugarcane setts were then treated in 52°C 
hot water for 30 min and dried before inoculation with 
Lxx. Inoculation of the one-budded setts was done by 
soaking them in a suspension of 16 × 108 cfu/mL of lab-
grown Lxx cells measured at OD600 following the method 
described by Ngo et al. (2023). The inoculated setts were 

then kept in trays under LED lights covered with moistened 
vermiculite at 30°C with 60–80% humidity for 2 weeks in a 
germination chamber. Subsequently, they were planted in a 
field at the SRA Pathology Research Station, Woodford in a 
randomised complete block design, with three replications 
consisting of six plants each. 

Sugarcane field samples 

Xylem sap samples were collected from three stalks (i.e. one 
stalk/replication) harvested at 53 weeks after inoculation, 
when the stalks produced at least two to three visible 
internodes above-ground. Xylem sap extracts (2 mL/variety) 
were collected as previously described (Croft et al. 1994) and 
stored at −20°C until processing. Sap samples were collected 
from the following genotypes: CP72-2086, Ho06-537, Q232, 
Q253, SRA20, Q208, WSRA24, Q242, SRA26, and SRA22, all 
with previously designated and industry accepted RSD 
disease ratings based on ELISA and/or qPCR studies (Croft 
et al. 1994; Croft 2002; Croft and Johnson 2013; Ngo et al. 
2023). The disease ratings employed in this study were on 
a 0 to 9 scale and adapted from Ngo et al. (2023; Table 1). 

Reagents and materials 

All reagents and chemicals used in this study were of 
analytical grade. Nuclease-free water (Integrated DNA 
Technologies, Australia) was used to prepare all aqueous 
solutions. PureLink™ Microbiome DNA purification kits 
were purchased from Thermo Fisher Scientific (Australia). 
Designed primers and synthetic targets (4.2 × 107 copies/μL) 
were purchased from Integrated DNA Technologies (USA). 
WarmStart® Colorimetric LAMP 2X Master Mix and 
WarmStart® Multi-Purpose RT-LAMP 2X Master Mix, and 
2X SensiFAST SYBER No-ROX Master Mix were purchased 
from New England Biolabs (Ipswich, MA, USA), and Meridian 
Bioscience (Cincinnati, Ohio, USA), respectively. All other 
reagents were purchased from Sigma-Aldrich (USA). 

Table 1. List of sugarcane cultivars used in this study, their RSD 
resistance rating and rating category (adopted from Ngo et al. 2023). 

Variety RSD rating Rating category 

Q253 8 Susceptible 

SRA26 6 Intermediate susceptible 

Q242 7 Susceptible 

Q232 6 Intermediate susceptible 

SRA20 8 Susceptible 

WSRA24 4 Intermediate resistant 

SRA22 3 Moderately resistant 

Q208 5 Intermediate resistant 

CP72-2086 3 Moderately resistant 

Ho06-537 3 Moderately resistant 
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Reagent-free DNA isolation method 

To develop a standard detection curve using a heat-induced 
reagent-free rapid DNA isolation method, a range of known 
concentrations of cultured Lxx cells (107−100 cells/μL) were 
inoculated into 1 mL of freshly extracted and ‘clean’ sugarcane 
xylem sap. Subsequently, the mixtures were boiled at 95°C for 
2 min in a digital heat block (Morganville Scientific, USA). 
Then, 2 μL aliquots of the cooled supernatant were used as 
templates for LAMP or qPCR assays. Once the detection 
thresholds were established, 100 μL volumes of field-collected 
and naturally infected sap samples were subjected to the same 
method and 2 μL of the resulting supernatant was again used 
for LAMP or qPCR. Each experiment was performed in triplicate 
and repeated three times to ensure accuracy and reliability. 

Commercial kit for DNA extraction 

Genomic DNA of Lxx was extracted from the known numbers 
of Lxx cultured cells (107−100 cells/μL) and RSD-infected 
field samples for qPCR analysis according to the described 
protocol of a commercial kit (The PureLink™ Microbiome 
DNA purification kit manual, Thermo Fisher Scientific, 
Australia). Each experiment was conducted in triplicate and 
repeated three times. 

Target selection and primer design 

Primers were designed targeting a 210 bp conserved section 
of the Lxx intergenic spacer (IGS) region between the 16S 
and 23S rRNA genes (GenBank accession no. AE016822.1) 
corresponding to positions 1,35,389–1,35,598 in L. xyli 
subsp. xyli  strain CTCB07 complete genome (National Center 
for Biotechnology Information (NCBI) 1988). This locus was 
chosen because of its single copy number status (Supplementary 
Fig. S1) (Monteiro-Vitorello et al. 2004, 2013) and had no 

significant similarity to any other sequences available in 
GenBank (searched on 26/04/2022). For qPCR analysis, 
forward and reverse primers (LxxFP and LxxRP respectively, 
Table 2) were designed using the NCBI primer blast web tool 
with standard parameters (Ye et al. 2012). For LAMP analysis, 
two loop primers (LxxLF and LxxLP), two outer primers 
(LxxF3 and LxxB3), and two inner primers (LxxFIP and 
LxxBIP) were designed using the NEB LAMP primer designing 
tool, again with standard parameters (https://lamp.neb.com) 
(Table 2) (Fig. 1). The specificity of each primer was confirmed 
by screening each sequence using the BLASTn (Chen et al. 
2015) tool against the NCBI nucleotide and genome databases. 
All the sequences were found to be 100% homologous to the 
corresponding Lxx sequences (Chen et al. 2015) and  no  
close matches (E < 10) was found. The OligoAnalyzer™ Tool 
(Integrated DNA Technologies Inc., USA) was used to assess 
the possibility of the formation of hairpins and dimers. 

LAMP reaction conditions 

LAMP mixtures for fluorescent or colorimetric analyses 
were prepared according to the protocols described in the 
WarmStart® Multi-Purpose RT-LAMP 2X Master Mix and 
WarmStart® Colorimetric LAMP 2X Master Mix (New 
England Biolabs, USA) manuals with slight modifications. 
WarmStart RT-LAMP reactions were carried out in a 25 μL 
mixture containing 2.5 μL of 10X LAMP primer concentra-
tion (2 μM each  LxxF3 and LxxB3, 16 μM each LxxFIP and 
LxxBIP, 4 μM each  of  LxxLF and LxxLB), 12.5 μL of 2X  
WarmStart Multi-purpose master mix, 0.5 μL SYBR Green 
fluorescent dye, 2 μL of DNA template and 8 μL of nuclease-
free water. WarmStart colorimetric LAMP reactions were 
also carried out in a 25 μL mixture containing 2.5 μL of 10X 
LAMP primer concentration (2 μM each of LxxF3 and LxxB3, 
16 μM each of LxxFIP and LxxBIP, 4 μM each  of  LxxLF and 

Table 2. Lxx-specific LAMP and qPCR primers designed in this study. 

Names of synthetic Sequence (5 0−3 0) Length (nt) E-value GC (%) 
targets and primers 

LxxSTS CATCGGTACGACTGGGTCTCAGCCGGTCAGCTCATGGGTGGAACATTGACATTGGTGCGGA 210 2× 10-103 59 
GCCGAACGGCTCGAACTTAGTACGCCTGCTTGCAGGAAGGAACAGTTCGGACCGGGGAGC 
CTCGCACATGCACGCTGTTGGGTCCTGAGGGACCGGACCTCATCGCTGTGTCTTCAAGACG 
CTGAGATGAGAACCGAATCCTCTGGACC 

LxxF3 CATCGGTACGACTGGGTC 18 38 61.1 

LxxB3 GGTCCAGAGGATTCGGTTC 19 9.6 57.8 

LxxFIP (F1c-F2) GGCGTACTAAGTTCGAGCCGTT- GGTCAGCTCATGGGTGGA 22–18 0.16–38 54.5–61.1 

LxxBIP (B1-B2c) CCTCGCACATGCACGCTGTT-CTCAGCGTCTTGAAGACACA 20–20 2.4–2.4 60–50 

LxxLF CTCCGCACCAATGTCAATGT 20 2.4 50 

LxxLB CTGAGGGACCGGACCTCATC 20 2.4 65 

LxxFP CATCGGTACGACTGGGTC 18 38 61.1 

LxxRP GGTCCAGAGGATTCGGTTC 19 9.6 57.9 

Here, E-value refers to the ‘Primer Efficiency value’, and GC refers to the percentage of guanine (G) and cytosine (C) bases in the primer sequence. 

4 

https://lamp.neb.com


www.publish.csiro.au/cp Crop & Pasture Science 75 (2024) CP24053 

Fig. 1. Schematic illustration of the primer design for the proposed 
LAMP assay representing the position of the eight primers spanning 
the target gene and the nucleotide sequences of the intergenic 
spacer (IGS) region between 16S and 23S ribosomal RNA (rRNA) genes 
(GenBank accession no. AE016822.1). Sequence corresponds to positions 
1,35,389–1,35,598 of L. xyli subsp. xyli strain CTCB07. The sense sequence 
is denoted by the right arrow, and the complementary sequence is 
denoted by the left arrow. 

LxxLB), 12.5 μL of 2X WarmStart colorimetric LAMP master 
mix, 2 μL of DNA template, and 8 μL of nuclease-free water. 
The mixture was incubated at 65°C for 40 min in a CFX96 
Touch Real-Time PCR Detection System (Bio-Rad Laboratories 
Pty Ltd, Australia). Products were kept at 4°C for further 
analysis. The 25 μL colorimetric LAMP product volumes 
were inspected visually in the 200 μL tubes. Samples that 
turned yellow were considered Lxx-positive, and those that 
remained pink were assumed to be Lxx-negative, as per the 
manufacturer’s instructions (New England Biolabs, USA). 
Variations in colour gradient were linked to pathogen loads, 
with intense yellow colour indicating higher concentrations 
of Lxx, and pinkish-yellow shades suggesting lower levels of 
Lxx present in the samples. The colour change achieved in 
the colorimetric LAMP reaction was captured with a mobile 
camera. Sterile distilled water (ddH2O) and fresh ‘clean’ sap 
served as the no-target controls (NTC), and Xalb cells and 
purified DNA from Xalb cells were used as negative controls 
(NC). Each experiment was performed in triplicate with three 
repetitions. 

qPCR assay and gel documentation 

To validate the LAMP assay, qPCR experiments were devised 
to detect the targeted intergenic spacer (IGS) region using 
synthetic targets, bacterial cell samples, and sugarcane sap 
samples collected from the field. RSD detection from sugarcane 
xylem sap samples was done using two conventional qPCR 
methods: (i) Using directly expressed xylem sap samples in the 
PCR reactions as a template (Goodwin and Lee 1993; Ghai et al. 
2014), or (ii) Using a commercial kit to extract Lxx DNA from 
the sugarcane sap samples before using as a template. The 
qPCR analyses were conducted following the 2X SensiFAST 
SYBER No-ROX Master Mix manual (New England Biolabs, 
USA). A CFX96 Touch Real-Time PCR Detection System 
(Bio-Rad Laboratories Pty Ltd, Australia) was used with the 
following reaction conditions: initial denaturation at 100°C 

for 1 min; 40 cycles at 98°C for 15 s, 52°C for 30 s and 72°C 
for 30 s; followed by heating at 72°C for 2 min to terminate the 
reaction and a hold of 4°C for 5 minutes. The quantification 
cycle (Cq) value of each dilution was analysed at the end of 
the reaction and Lxx was considered present if a positive 
result was observed in less than 40 cycles. Each assay was 
performed in triplicate for three repeated experiments. For 
gel documentation, an aliquot of 5 μL of each LAMP or PCR 
product was loaded on 1% agarose, electrophoresed in 1X 
Tris-acetate-EDTA (TAE) buffer at 90 V for 40 min, stained with 
SYBR safe and visualised using UV light under gel documen-
tation system. A 100 bp GeneRuler (Thermo Fisher Scientific, 
Australia) was used to estimate the sizes of amplified products. 

Statistical analysis 

Serial dilutions of known L. xyli subsp xyli target sequence, 
Lxx cells, and purified genomic DNA concentrations were 
used to generate a standard curve for the absolute quantifica-
tion of Lxx. This was then used to determine the sensitivity 
and detection threshold of the qPCR. The standard curve 
was represented as a semi-log regression line plot of Cq 
values versus the −log of the input DNA template amounts. 
The efficiencies (E) of the fluorescence LAMP and qPCR 
assays were calculated using E = (10−1/slope) − 1. Validation 
of fluorescence LAMP and qPCR results with target-specific 
primers was achieved when E-values were between 0.9 and 
1.1, with E-values closer to 1.0 indicating higher amplifica-
tion efficiency (Wu et al. 2018). The determination of Lxx 
quantity relied on Cq values derived from the analysis of 
xylem sap samples. This was then correlated with established 
disease resistance ratings, as demonstrated in earlier studies 
(Davis et al. 1988; Ngo et al. 2023). Consequently, a linear 
mixed model was fitted to the Cq datasets using proc mixed in 
SAS version 9.4 (SAS Institute, Cary, NC, USA), where varieties 
were treated as fixed effects, and block (replication) and the 
error term (residual) were treated as random effects. For the 
appropriate significance factors, protected-mean comparisons 
of all possible pairwise differences of the Cq values were 
tested at alpha = 0.05, using Fisher’s protected l.s.d. test. 
PDMIX800 SAS Macro was then used to convert mean 
separation outputs to letter groupings (Saxton 1998). Spearman 
rank correlation was then conducted between the outputs of 
the LAMP and qPCR methods to determine the relatedness 
and accuracy of the newly developed method. Statistical 
analyses were performed using OriginPro 2022 v.9.9.0.225 
(OriginLab, Northampton, Massachusetts, USA), and Microsoft 
Excel 365 (USA). Graphical representations of data were carried 
out using BioRender, SnapGene software (www.snapgene.com), 
and Microsoft  Powerpoint  365 (USA).  A  mobile  camera  
(Samsung Galaxy A52s) was used to capture the colour change 
during the colorimetric LAMP reaction. The mean value ± s.e. 
among all three replications were determined for each sample. 

5 

https://www.snapgene.com
www.publish.csiro.au/cp


M. Chakraborty et al. Crop & Pasture Science 75 (2024) CP24053 

Results 

Validation of novel Lxx target sequences and 
robustness of LAMP assay 

The newly designed LAMP primer sets successfully amplified 
the targeted IGS region (210 bp) in both colorimetric and 
fluorescent LAMP assays using 10 pM (i.e. 107 copies/μL) 
synthetic target sequences, confirming their efficacy (Fig. S2). 
In colorimetric LAMP, a colour change from pink to yellow 
indicated positive responses where the Lxx targets were 
present, whereas NTC and NC reactions remained pink, 
indicating that the primers were specific and useful for 
naked-eye detection of Lxx (Fig. S2). Additionally, the positive 
colour change to yellow occurred in all eight serially diluted 
concentrations of synthetic target sequence (representing 
107−100 copies/μL) with a threshold of detection of 1 copy/μL 
(1 ag/μL) (Fig. 2a). Accordingly, the fluorescent LAMP assay 
detected the synthetic targets in the infected sap only, and 
not in the NTC (Fig. S2). The LAMP amplification signal level 
was directly and reproducibly proportional to the target 

concentration (Fig. 2b and S3a), with a correlation coefficient 
(r) of 0.99. Again, the threshold of LAMP assay detection was 
1 copy/μL (1  ag/μL) and subsequent gel electrophoresis 
confirmed amplification of the expected size (210 bp) only 
in positive reactions (Fig. S2 and S3b). 

Successful qPCR amplification of the synthetic target 
(1 nM) at an annealing temperature of 52°C validated the 
LAMP assay results (Fig. S6a). Consequently, the qPCR 
standard curve with titrated synthetic target (ranging 
107−100 copies/μL of  Lxx; Fig. 2c) was established and had 
a detection threshold of 10 copies/μL (100 ag/μL), 10 times 
less sensitive than the LAMP assay (Fig. 2b). Meanwhile, a 
single amplicon of the correct size (210 bp) was visualised 
from only the positive samples (Figs S6b and S7c). 

Validation of LAMP-based in-situ detection and 
quantification of Lxx 

Using predetermined and titrated concentrations of Lxx cells 
(107 to 100 cells/μL), the detection threshold of the colorimetric 

Fig. 2. LAMP and qPCR primer pairs checking with different synthetic target concentrations. 
(a) Colorimetric LAMP detection for the designated concentrations; Tubes 1 to 8: 1:10 dilutions 
of the synthetic target (107−100 copies/μL, or 10 pg/μL-1 ag/μL); Tube 9: No Target Control 
(NTC). Obtained Cq value of (b) Fluorescence LAMP and (c) qPCR detection for the designated 
concentrations of synthetic targets (107−100 copies/μL, or 10 pg/μL-1 ag/μL). Error bars 
represent the standard deviation of three repetitive experiments (biological replications). 
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LAMP assay was approximately ~1 cell/μL (Fig. 3a) and was 
the same for the fluorescence LAMP assay (s.d. = ≤5% (n = 3), 
and r = 0.99; Fig. 3b and S4a). Also, the expected LAMP 
amplicon (210 bp) was observed on agarose gel in only 
positive samples (Fig. S4b). 

To validate the LAMP assay with Lxx cell samples, the 
standard plot for qPCR-based absolute quantification was 
obtained by plotting Cq values against a log of the 
corresponding amount of purified DNA extracted from the 
titrated Lxx cells. Consequently, qPCR effectively amplified 
the target region from the DNA extracted from as little as 
100 Lxx cells (Fig. 3c and S7b). Again, the expected amplicon 
(210 bp) was observed on agarose gel in only positive sample 
reactions (Fig. S7d). There was a strong correlation (r = 0.99) 
between the Cq value from the LAMP and qPCR reactions. 
Also, the LAMP assay was 100 times more sensitive than the 
qPCR for in-situ detection and quantification of Lxx bacteria 
(Fig. 3b versus Fig. 3c). 

Correlation of the new LAMP diagnostic with RSD 
resistance rating 

To investigate the applicability of the assay for RSD resistance 
screening, the yellow colour was detected in all RSD-infected 
xylem sap samples from the 10 sugarcane varieties of known 
RSD resistance rating. Additionally, the gradient of the yellow 
colour was correlated with the industry resistance rating of 
the cultivar. The most intense colours were visualised from 
sap samples collected from more susceptible cultivars Q253, 
SRA26, SRA20, Q232, and Q242 (Fig. 4a, Tube# 1, 2, 8, 9 and 
10), indicating high bacterial concentrations. In contrast, sap 
samples from more resistant cultivars Ho06-537, CP72-2086, 
Q208, SRA22, and WSRA24 (Fig. 4a, Tube # 3, 4, 5, 6, and 7) 
had a pinkish-yellow colour intensity in the reaction, 
suggesting lower bacterial concentrations (Table 1; Fig. 4a). 

The fluorescent LAMP assay successfully amplified Lxx 
DNA from all collected samples at different cycle times, 
indicating different levels of pathogen loads (Fig. 4b and S5a). 

Fig. 3. Sensitivity and specificity analysis. (a) Colorimetric LAMP detection for the designated 
samples; Tubes 1 to 8: 1:10 dilutions created by spiking cells into clean fresh sap (107−100 cells/μL); 
Tube 9: No Target Control (NTC); Tube 10: Known number of spiked Xalb cells (107 cells/μL). 
(b) Obtained Cq of fluorescence LAMP and qPCR detection for the designated number of Lxx 
cells spiked into fresh xylem sap (107−100 cells/μL); error bars represent the standard deviation 
of three repetitive experiments. 
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Fig. 4. Field application of assay. (a) Colorimetric detection for all the analysed xylem sap samples 
collected from SRA Woodford RSD screening trials. Tubes 1 to 10: RSD-infected xylem sap samples-
Q253, SRA26, Ho06-537, CP72-2086, Q208, SRA22, WSRA24, SRA20, Q232, and Q242; Tube 11: No 
Target Control (NTC); obtained Cq values for these samples, (b) fluorescence LAMP detection; 
qPCR detection of (c) directly on expressed xylem sap sample; (d) commercial kit-based DNA 
extraction technique; each bar is the mean of three replications, and bar(s) associated with same 
letter(s) are not significantly different according to Fisher’s protected l.s.d. test (P = 0.05). 

The determined amount of Lxx DNA was then significantly 
correlated to the cultivar resistance rating, where higher 
LAMP values corresponded to lower known RSD resistance 
ratings (r = −0.82, P < 0.001; Table 3). Sap from the most 
susceptible cultivars, Q253, Q242, and SRA26 contained 
the highest number of bacteria (approximately 106−107 Lxx 
cells/μL of sap samples), as depicted by their lower Cq values 
(20.02, 20.56, and 20.33) (Fig. 3b, 4b). In this manner, 
the LAMP results were validated with the susceptible to 
intermediate susceptible rating of cultivars Q232, SRA20 
and WSRA24, with Cq values 21.09, 21.47, and 22.34 
respectively, and the presence of around 105−106 cells/μL 
(Fig. 3b, 4b). Similarly, the LAMP results of SRA22 
(Cq 23.38) and Q208 (Cq 23.49) were correlated with their 
intermediate resistant rating, exhibiting approximately 
104−105 cells/μL, and were significantly (P < 0.05) different 
from that of CP72-2086 (Cq 24.50) and Ho06-537 (Cq 25.29), 

which showed approximately 103−104 cells/μL of sap 
(Fig. 3b, 4b). The LAMP results of CP72-2086 and Ho06-537 
were supported by the previous findings by Ngo et al. (2023) 
that they are moderately resistant to RSD. Significantly 
different amounts of Lxx DNA 210 bp target amplicons were 
detected among sap samples from the cultivars and did not 
amplify in the control reactions (Fig. S5b; P = 0.05; Fig. 4b). 

The target qPCR region was amplified from all infected 
field sap samples and assessed at all cycle times. The amount 
of amplified product was also directly correlated with the 
cultivar resistance rating (Table 1; Figs 4c, d, Figs S8a and S8b), 
albeit with different amounts of Lxx detected between the 
two methods and hence slightly different disease rating 
predictions (Figs 4, S8d). Both qPCR samples (sap and DNA) 
showed strong negative correlations with the resistance 
ratings. However, qPCRsap had slightly weaker (r = −0.72, 
P < 0.05) and qPCR_DNA showed slightly stronger (r = −0.87, 
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Table 3. Spearman correlation coefficients calculated from LAMP and 
qPCR methods. Used for further correlation testing with RSD resistance 
ratings of ten sugarcane cultivars. 

FactorsA qPCRsap qPCR_DNA Resistance rating 

LAMPB 0.98*** 0.88** −0.82** 

qPCRsapC 0.78* −0.72* 

qPCR_DNAD −0.87** 

* = significant at or < 0.05 levels, ** = significant at or <0.01, *** = significant at or 
<0.001 levels. 
ACorrelations were based on 10 observations. 
BLAMP = LAMP data from isolated DNA of xylem sap samples by heat-induced 
cell lysis. 

CqPCRsap = qPCR data obtained directly from expressed xylem sap samples. 
DqPCR_DNA = qPCR data from commercial kit-based DNA extraction of xylem 
sap samples. 

P < 0.001) correlations (Table 3). Again, a single amplicon was 
present on the gel from positive samples only (Fig. S8c and d). 

Discussion 

The novel LAMP assay developed in this study provides for 
the first time a quantitative Lxx diagnostic tool capable of 
predicting sugarcane cultivar RSD resistance rating. This 
method is highly sensitive (able to detect as little as 1 Lxx 
cell/μL) and highly specific to  Lxx as determined via in 
silico BLASTn analysis. The newly developed diagnostic is 
more sensitive than the previously developed Lxx diagnostic 
detection thresholds of 10 pM–0.03352 nM, equating to 
approximately 103−104 cell(s)/reaction (Grisham et al. 2007; 
Liu et al. 2013; Ghai et al. 2014). Additionally, previously 
published Lxx LAMP diagnostic methods were specifically 
designed for the successful detection of Lxx infection and 
were not employed for resistance rating purposes. 

So far, only a limited number of studies have reported the 
use of LAMP-based assays for resistance rating. Recently, 
Wamalwa et al. (2017) reported a LAMP technique for the 
effective rating of Napier grass accessions for Napier grass 
stunt resistance. However, they used complex and time-
consuming DNA extraction steps for extracting DNA from the 
plant samples and for detection, they also used subjective gel 
electrophoresis for the analysis. This new Lxx LAMP assay 
provides real-time, rapid, and naked-eye read-out streamlined 
with a simple field-applicable heat-induced DNA isolation 
method, avoiding the use of multistep sample processing 
and expensive commercial kits. This approach enables 
the quantitative assessment of Lxx titres by providing Cq 
values, facilitating the detection of pathogen loads in 
sugarcane cultivars. Lower Cq values indicate a higher number 
of Lxx cells, whereas higher Cq values suggest a lower number 
of Lxx cells. This correlation aligns with the standard RSD 
resistance ratings employed in Australia and elsewhere, as 
susceptible to intermediate-susceptible cultivars exhibit lower 
Cq values and a more intense yellow colour, whereas 

intermediate-resistant to moderately-resistant cultivars display 
higher Cq values and a pinkish-yellow colour in fluorescent and 
colorimetric LAMP reactions. Additionally, minimal training is 
required to conduct the assay, which produces a result within 
just 40 min from stalk sample collection to read-out. These 
advantages indicated the utility of this new diagnostic test 
for fast, cost-effective, and relatively simple disease rating. 

Once further validation is undertaken on a wider range of 
cultivars and samples from a wider range of environmental 
settings, this tool has the potential to become a new RSD 
management tool for researchers and growers, especially if it 
can be integrated into a portable hand-held device (Strachan 
et al. 2023). This represents a powerful tool for sugarcane 
growers and breeders alike, as quantifying Lxx titre in 
field-grown samples is an effective strategy for developing 
RSD-resistant sugarcane cultivars for RSD management 
(Young 2018). Indeed, the Lxx titre determined from qPCR, 
visual or quantitated LAMP assays in replicated field-grown 
plants assessed in this study was tightly correlated with the 
established cultivar industry resistance ratings (Croft et al. 
1994; Croft 2002; Croft and Johnson 2013; Ngo et al. 2023). 
This is completely congruent with historical understanding 
(Teakle et al. 1978). This study is the first to demonstrate 
that RSD-causing bacteria can be detected and screened for 
resistance in infected sugarcane crops with various levels of 
bacterial loads using the LAMP method. However, further 
research is needed to validate this method in a wide range 
of varietal combinations and agroclimatic conditions. 

In summary, a novel LAMP-based Lxx quantitative 
diagnostic tool was developed for RSD resistance screening. 
This diagnostic tool exhibits high sensitivity (1 cell/μL) and 
reproducibility (s.d. <5%). Furthermore, it was validated 
for quantitative detection of Lxx, demonstrating a strong 
correlation with established cultivar disease ratings (r = 0.82, 
n = 10, P < 0.001). In future, this diagnostic may also serve as 
a tool to better understand how environmental conditions 
influence bacterial population dynamics, pathogen prolifera-
tion, disease progression, and the expression of resistance 
(Singh et al. 2023). 

Supplementary material 

Supplementary material is available online. 
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