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A B S T R A C T   

This paper investigates for the first time the piezojunction effect in heterojunctions under external bias for ul-
trasensitive strain sensing. As a proof of concept, we used sensing devices made of 3C-SiC/Si heterostructure with 
vertically aligned electrodes. Applying the beam bending method to characterize the sensing effect, the bending 
strain was introduced along the typical orientation [100] or [110] on (100) Si plane. Experimental results show a 
linear relationship between the relative change in the forward current and the applied strain from 0 to 500 ppm, 
decreasing under the tensile strain while increasing under the compressive strain. At the forward bias of 8 V, the 
obtained gauge factors (GFs) are 199.7 for [100] orientation and 173.1 for [110] orientation, which significantly 
enhance about 630 % and 540 % compared to the highest GF of n-type 3C-SiC in the literature. Interestingly, the 
GFs of the n+-3C-SiC/p-Si heterostructure are positive in contrast to the negative GFs of n-3C-SiC thin films. The 
results were explained by the strain modulation on the band split and electron mass shift along the out-of-plane 
direction as well as by the change in the barrier height, depletion region width, and carrier concentrations under 
the forward bias. The ultrasensitive piezojunction effect in the 3C-SiC/Si heterojunction demonstrated in this 
study can pave the way toward developing ultrasensitive mechanical sensors.   

1. Introduction 

Strain-sensitive characteristics in semiconductors have been studied 
extensively for developing a wide range of mechanical sensing devices, 
such as pressure sensors, strain gauges, and accelerometers [1,2]. It is 
widely accepted that the piezoresistive effect is one of the most domi-
nant mechanisms for making these sensors thanks to its high sensitivity, 
great linearity, simple fabrication, electronic integration capability, and 
low power consumption [3–5]. The enhancement of strain sensitivity 
using this sensing mechanism has attracted great attention after being 
discovered by Smith [6]. On the same wafer, the largest gauge factor can 
be obtained by selecting proper orientations, namely [100] for the 
n-type and [111] for the p-type (100) silicon (Si) [7,8]. Material struc-
tures also affect the piezoresistive effect. For example, single crystalline 
silicon carbide (SiC) has higher absolute gauge factors in comparison 
with polycrystalline SiC, approximately 20–30 at room temperature and 

about 10–18 at high temperature of 450 ◦C [7,9,10]. Besides, optimal 
doping concentrations were demonstrated to improve considerably the 
strain sensitivity [11,12]. Furthermore, Phan, et al. [13] experimentally 
demonstrated that a low density of defects was observed in SiC thin films 
with thicknesses more than 300 nm, which increased the gauge factor by 
more than 20 %. Another approach is utilizing Si nanowires thanks to 
advanced nanofabrication techniques [14,15]. Compared to bulk Si, the 
longitudinal piezoresistive coefficient of about − 3550 × 10− 11 Pa− 1 in 
fabricated Si nanowires is about 38 times larger [15]. In this case, the 
increase in the charge mobility and the ratio of surface-to-volume 
considerably enhances the strain sensitivity. 

Among all the above methods, the approach of scaling down devices 
to nano level has been demonstrated to enhance substantially the pie-
zoresistive effect. However, the reliability and stability of the piezor-
esistive effect as well as the durability of sensing devices at that nano 
level is still controversial [16,17]. Therefore, the enhancement of strain 

* Corresponding authors. 
E-mail addresses: congthanh.nguyen@griffith.edu.au (C.T. Nguyen), d.dao@griffith.edu.au (D.V. Dao).  

Contents lists available at ScienceDirect 

Applied Materials Today 

journal homepage: www.elsevier.com/locate/apmt 

https://doi.org/10.1016/j.apmt.2024.102157 
Received 23 October 2023; Received in revised form 28 February 2024; Accepted 7 March 2024   

mailto:congthanh.nguyen@griffith.edu.au
mailto:d.dao@griffith.edu.au
www.sciencedirect.com/science/journal/23529407
https://www.elsevier.com/locate/apmt
https://doi.org/10.1016/j.apmt.2024.102157
https://doi.org/10.1016/j.apmt.2024.102157
https://doi.org/10.1016/j.apmt.2024.102157
http://creativecommons.org/licenses/by/4.0/


Applied Materials Today 37 (2024) 102157

2

sensitivity at device scale still plays a critical role in this field. Table 1 
summarizes the gauge factors of the most common bulk materials 
[18–20]. It is clearly noted that Si and Ge are the semiconductors of 
choice for large piezoresistive effect [21]. However, these low bandgap 
materials exhibit inherent problems at elevated temperatures [22]. In 
contrast to Si and Ge, silicon carbide (SiC) has a wider bandgap (2.3–3.2 
eV), which leads to stable electrical characteristics at high temperatures 
[23,24]. The piezoresistive effect in SiC is also good with gauge factors 
of − 31.8 and 30.3 for n-type and p-type 3C-SiC, respectively [20]. SiC 
also has great mechanical strength, high thermal conductivity, and 
strong chemical inertness, all of which are important for sensing devices 
operating in extreme environments [25,26]. Thanks to the advances in 
Si fabrication processes, single crystalline 3C-SiC has been successfully 
deposited on Si wafers with diameters up to 300 mm [27]. Conse-
quently, commercially available 3C-SiC/Si wafers have been produced 
to meet the demands of academia and industry. Extensive studies on the 
strain-sensitive characteristics of 3C-SiC have been conducted, from the 
piezoresistive effect to the piezo-optoelectronic effect, from different 
fabrication possesses to novel sensor designs [8,28,29]. 

Mechanical stress also affects the electrical properties of p-n junction 
devices, which is known as the piezojunction effect [31,32]. The change 
in the current through the junction under an applied strain is caused by 
the alteration in the mobility of minority carriers and the concentration 
of intrinsic carriers [31]. For example, a uniaxial tensile bending stress 
induced an apparent increase in the base current while decreasing the 
collector current of bipolar transistors [31]. Based on this sensing effect, 
prototypes of some mechanical sensing devices have been developed, i. 
e., microphones, accelerometers, and pressure sensors [33–35]. Study-
ing the piezojunction effect in Si and germanium (Ge) homojunctions, 
Wortman et al. reported that the stress level must be about 109 − 1010 

dynes/cm2 for utilizing these p-n junctions as stress transducers [36]. 
That stress level is close to the fracture strengths of Si and Ge, which 
explains why this effect has not been applied widely. According to the 
current literature, we note that the piezojunction effect in semi-
conductor heterojunctions has not been investigated. Therefore, as a 
proof of concept, this research used an n+-3C-SiC/p-Si heterojunction 
for developing ultrasensitive mechanical sensing devices. Applying the 
beam bending method, the forward current was measured under 
different strain conditions. The obtained experimental results demon-
strate the highly sensitive piezojunction effect in the SiC/Si hetero-
junction for pressure/strain sensing applications. 

2. Device fabrication and experimental setup 

Experiments were conducted using cantilevers constructed from a 
3C-SiC/Si heterojunction to investigate the piezojunction effect under 
forward bias. The fabrication process encompassed ten main steps, 
Fig. 1. The starting material was a commercially available p-type silicon 
wafer, with the thickness of 400 μm and the doping concentration of 
1014 cm− 3. Firstly, we cleaned the wafer following the RCA (Radio 
Corporation of America) cleaning procedure (Step 1). Following this, we 
grew an epitaxially single crystalline heavy-doped n+-3C-SiC layer on 
top of the original Si wafer (Step 2). This epitaxial growth process was 

carried out with low-pressure chemical vapor deposition at 1000 ◦C 
using propene and silane precursors. The resulting 3C-SiC layer is 
approximately 500 nm ± 10 % thick, confirmed by NANOMETRICS 
Nanospec-based measurement. The transmission electron microscopy 
(TEM) image shows a crystal defect at the SiC/Si interface, Fig. 2a. The 
selected area electron diffraction (SAED) image confirms the single 
crystalline of 3C-SiC on the Si, Fig. 2b. The doping concentration of this 
SiC thin film is approximately 5 × 1018 cm− 3, confirmed by the hot 
probe and Hall effect methods. The back surface of the Si wafer was then 
sputtered with aluminium (Step 3), spin-coated with a photoresist layer 
(Step 4), and then patterned by exposure to ultraviolet light using the 
maskless aligner MLA150 from Heidelberg Instruments (Step 5). The 
same processes were applied to the SiC surface (Steps 6–8). The for-
mation of top and bottom electrodes was achieved through wet etching 
(Step 9), then we diced the wafer into cantilevers of 40-mm length and 
10-mm width (Step 10). 

Fig. 2c illustrates the experimental setup for examining the strain- 
sensitive characteristics of the SiC/Si heterojunction under forward 
bias. The depletion region in the interface between SiC and Si is created 
by layers of positive and negative immobile ions resulting from the 
diffusion of majority charge carriers (electrons and holes) in opposite 
directions [37,38]. The cantilever was fabricated along two typical 
orientations [100] and [110] on the Si wafer (100). One end of the 
cantilever close to the vertically aligned electrodes was clamped while 
another end was subjected to varying loads. A forward bias was applied 
to the SiC/Si heterojunction through the fabricated electrodes using 
Keithley 2450 source meter. Specifically, the positive end of the source 
meter was connected to the top electrode on the SiC while the negative 
end was connected to the back electrode on the Si. All experiments were 
conducted in a dark condition at room temperature. 

3. Results and discussions 

First, the current-voltage (I–V) characteristics of the SiC/Si hetero-
junction under free strain condition were examined, starting with the 
test of contacts between aluminum (Al) electrodes and their respective 
semiconductor layers. To do this, two electrodes on the same surface 
were connected to the source meter, then a voltage sweep from − 3 V to 3 
V was applied. The obtained I–V curves between lateral electrodes on 
the SiC layer and Si substrate are presented as Fig. 3a, and the linear I–V 
relationships demonstrate the excellent Ohmic contacts of the fabricated 
Al electrodes. This results in the extremely low resistance between these 
electrodes and their semiconductor layers, so the SiC/Si heterojunction 
chiefly decides the electrical behavior between the vertically aligned 
electrodes. Fig. 3b shows the excellent p-n junction characteristics under 
both forward and reverse biases. The current undergoes an exponential 
increase as a response to the applied forward bias while diminishing 
significantly under the reverse voltage. 

Second, the piezojunction effect in the SiC/Si heterojunction under 
forward bias was experimentally investigated by using the beam 
bending method. Two typical orientations [100] and [110] with 
different Young’s modulus were examined. Using a pulley to change the 
load direction, different loads from 10 g to 60 g were introduced to 
induce tensile or compressive strains in the SiC/Si cantilever. As the SiC 
thickness is much smaller than that of Si, the bending-induced strain in 
SiC is expected to be the same as the strain at the Si interface. Next, we 
determined the mechanical strain in the SiC layer as follows: 

ε =
Mt
ESiI

=
6M

ESiwt2 (1)  

where M is the applied moment, t is the thickness of the SiC/Si canti-
lever, ESi is the Young’s modulus of Si (130 GPa in [100] orientation and 
169 GPa in [110] orientation), I is the inertial moment, and w is the 
width of the SiC/Si cantilever [39]. 

By applying a specific bias voltage, the change in the forward current 

Table 1 
Longitudinal gauge factors of the most common semiconductors.  

Material Orientation Reference  

[100] [111] [110]  

n-Si − 133 − 14 − 52 [19,30] 
p-Si +8.6 +175 +120 [19,30] 
n-Ge − 5.3 − 157 − 105 [19,30] 
p-Ge − 10.9 +102 +65 [19,30] 
n-GaAs − 3.2 − 8.9 − 6.7 [19] 
p-GaAs − 12 +38.2 +21 [19] 
n-3C-SiC − 31.8 – – [7,20] 
p-3C-SiC – – +30.3 [8,20]  
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Fig. 1. Fabrication process. Step 1: Clean the commercial Si (100) wafer. Step 2: Grow a 3C-SiC thin film on top of the Si wafer. Step 3: Sputter Al on the back side. 
Step 4: Spin coat photoresist on the back side. Step 5: Photolithography the back side. Step 6: Sputter Al on the top side. Step 7: Spin coat photoresist on the top side. 
Step 8: Photolithography the top side. Step 9: Wet etch Al on both sides. Step 10: Dice the wafer into cantilevers. 

Fig. 2. (a) TEM image of the 3C-SiC. (b) SAED image of the 3C-SiC. (c) Schematic of the experimental setup.  

Fig. 3. Current-voltage characteristics of the fabricated device. (a) I–V curves between lateral 1-mm spacing electrodes on the SiC and Si surfaces, (b) I–V curve 
between the vertically aligned electrodes on top and bottom of SiC/Si heterojunction. 
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with respect to the varied strain application was measured by the four- 
point measurement using the source meter Keithley 2450. Fig. 4a,b 
present the change in the forward current under 4-V bias when hanging 
the cantilevers with different loads of 20, 40, and 60 g. It is clearly seen 
that the forward current decreases under tensile load but increases 
under compressive load for both [100] and [110] orientations. Taking 
the orientation [100] as an example, the forward current is 10.89 mA 
under free strain condition, going down to 10.62 mA under 60 g-tension 
load and going up to 11.20 mA under 60 g-compression load. The 
induced strain on the SiC layer beneath the top electrode was then 
computed. Fig. 4c clearly shows the linear relationship between relative 
current change (ΔI/I) and induced strain from 0 to 500 ppm under the 
forward bias of 4 V, decreasing under tensile strain while increasing 
under compressive strain. We should note that the difference in Young’s 
modulus of two orientations induces different strains under the same 
applied load. The fractional current changes under tension and 
compression were also symmetric for both [100] and [110] orientations. 
Furthermore, the relative current change for the [100] oriented canti-
lever is larger than that of the [110] oriented cantilever. These results 
indicate the ability of this piezojunction effect for developing mechan-
ical strain/pressure sensors. 

To evaluate the piezojunction effect in the SiC/Si heterojunction, 
gauge factor (GF)—the ratio between the factional resistance change 
and the induced strain was calculated as follows: 

GF =
ΔR
R0

×
1
ε =

− ΔI
I

×
1
ε (2)  

where ΔR is the resistance change, R0 is the forward resistance under a 
free strain condition, ΔI is the current change, and I is the forward 
current under an applied strain. 

Using (2), the GFs of the n+-3C-SiC/p-Si heterojunction when 
bending along [100] and [110] orientations are 55.5 and 37.6, respec-
tively. Interestingly, these GFs are positive while the GFs of n-3C-SiC thin 
film are known to be negative. Besides, these GFs are significantly higher 
than the highest longitudinal GF ( − 31.8) of n-3C-SiC along the most 
sensitive [100] orientation reported in the literature [7]. 

Third, experiments were replicated with other forward biases from 2 
V to 8 V. Fig. 4d shows the obtained gauge factor with respect to the 
applied bias. The inset depicts the SiC/Si wafer with two orientations 
[100] and [110] selected to fabricate the cantilevers. The most 
remarkable result to emerge from this figure is that the GFs increase 
exponentially when increasing the applied voltage. At 8-V forward bias, 
the GFs of the SiC/Si heterojunction when bending the [100] and [110] 
oriented cantilevers are 199.7 and 173.1, respectively. These values are 
about 630 % and 540 % higher than the highest longitudinal GF of n-3C- 
SiC along the most sensitive direction [100] reported to date in the 
literature. Besides, the orientation [100] is more sensitive with higher 
GFs than [110] under all applied voltages. Again, these results 

Fig. 4. The forward current at 4-V bias under (a) tensile conditions, (b) compressive conditions. (c) Responses of the fractional current change to the induced tensile 
and compressive strains at the forward bias of 4 V. (d) Responses of the gauge factor with respect to the applied forward bias. 
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demonstrate the ultrasensitive piezojunction effect in the SiC/Si heter-
ostructure for mechanical sensor applications. 

Fig. 5 explains in detail the ultrasensitive piezojunction effect in the 
SiC/Si heterojunction under forward bias. Applying a vertically down-
ward load to the free end of the cantilever induces a tensile strain in the 
top SiC layer, which causes the conduction band split and consequently 
the repopulation of charge carriers, Fig. 5a [40,41]. The top right inset 
shows six equivalent energy valleys in the conduction band of n-type SiC 
under an unstressed condition. These ellipsoid valleys align with 
six-equivalent 〈100〉 orientations in k-space. In a single valley, the 
effective mass of an electron is oriented dependent or anisotropic. The 
larger energy curvature of the ellipsoid valley results in the smaller 
effective mass, which means the electron effective mass along the 
rotational axis is larger than that along the perpendicular direction (m‖

> m⊥). We consider two of the six energy valleys along the orientations 
[100] and [001] to explain the piezojunction effect in this study. The 
applied strain is along [100] orientation, then the band structure and 
electron effective mass are considered in [001] direction or the 
out-of-plane direction through the junction. The induced tension results 
in the upward movement of the band edge (+ΔE) along the direction 
[100] and downward movement of the band edge ( − ΔE) along the 

perpendicular direction [001] [1]. As electrons tend to transfer to the 
valley with a lower energy level, the repopulation reduces the number of 
electrons in the [100] valley while increasing electrons in the [001] 
valley. Consequently, when downwardly bending the cantilever along 
[100] orientation, less electrons exist with higher energy level in [100] 
valley, whilst more electrons with lower energy level are in [001] valley. 

Fig. 5b depicts the energy band diagram of the SiC/Si heterojunction 
and the effective mass of electrons in 3C-SiC along the orientation [001] 
or out-of-plane direction when the [100] oriented cantilever is bent 
down. The stress state in the Si substrate changes continuously from 
tensile in the top half to compressive in the bottom half while the 
thickness of SiC is much smaller than the diffusion length of charge 
carriers. Therefore, the effect of these regions on the forward current 
under stress/strain can be ignored. Considering the area around the 
depletion region, the barrier height of valence bands (1.7 eV) is much 
larger than that of the conduction bands (0.45 eV). Consequently, the 
alteration in the forward current in the SiC/Si heterojunction under the 
applied load mainly results from the strain modulation on the migration 
of electrons from SiC to Si. Fig. 5a indicates that there are the same 
number of electrons in two perpendicular energy valleys under the un-
stressed condition. Considering the out-of-plane direction, the electrons 

Fig. 5. Phenomena explanation. (a) Modulation of two n-SiC energy valleys in k-space under tensile strain, (b) Energy band diagram and effective mass of charge 
carriers along the out-of-plane direction under tensile strain, (c) Carrier distributions under forward bias, (d) Current densities under forward bias. 

C.T. Nguyen et al.                                                                                                                                                                                                                              



Applied Materials Today 37 (2024) 102157

6

in the ellipsoid valley [001] are heavier than those in the valley [100] 
(m‖ > m⊥). On the other hand, the tensile strain induces the band split 
and the electron repopulation, resulting in more heavy electrons (m‖) 
with lower energy, and less light electrons (m⊥) with higher energy. In 
other words, under tensile strain, there are more heavy electrons with 
larger energy barrier (ϕHE) and less light electrons with smaller energy 
barrier (ϕLE), reducing the average mobility or increasing the resistivity 
in the out-of-plane direction. This hypothesis is consistent with the 
decrease in the forward current under tension as obtained in experi-
ments. In the case of compression, opposite strain effects on the band 
split and electron effective mass cause an increase in the forward cur-
rent, which is again consistent with the corresponding experiments. 

Fig. 5c and d present the idealized carrier distributions and current 
densities in the SiC/Si heterojunction under an applied forward bias. 
This bias voltage causes the injection of charge carriers in opposite di-
rections, so minority electrons move toward the p-Si while minority 
holes migrate to the n+-3C-SiC (Fig. 5c). However, the injected minority- 
carrier densities are relatively small in comparison with the majority- 
carrier densities. Taking into consideration the positions at the bound-
ary of the depletion region on the p-Si and n+-3C-SiC sides, the minority 
electron and hole densities are determined respectively as [38]: 

np = np0exp
(

qV
kT

)

(3)  

pn = pn0exp
(

qV
kT

)

(4)  

where np0 and pn0 are the equilibrium electron and hole densities on the 
p-Si and n+-3C-SiC, respectively, q is the elementary charge, k is the 
Boltzmann constant, T is the temperature, and V is the applied forward 
bias. 

Fig. 5d schematically illustrates the current densities in the SiC/Si 
heterostructure. The total current through the heterojunction is the sum 
of the electron and hole diffusion currents: 

I = In + Ip (5)  

where I is the total current, In and Ip are the electron and hole diffusion 
currents. As the depletion width is much smaller than the diffusion 
length, the electron and hole currents throughout the depletion region 
are considered to be constant, which are calculated as follows [38]: 

In =
qDnnp0

Ln

[

exp
(

qV
kT

)

− 1
]

(6)  

Ip =
qDppn0

Lp

[

exp
(

qV
kT

)

− 1
]

(7)  

where Dn and Dp are the electron and hole diffusion coefficients, Ln and 
Lp are the electron and hole diffusion lengths, respectively. 

The electron current is due to the injection from n+-3C-SiC to p-Si, 
but its magnitude is determined by the properties of the p-Si (Dn, Ln, np0). 
On each side of the heterojunction, the total current is the sum of the 
majority and minority diffusion currents, which is constant throughout 
the heterojunction. In summary, the introduced forward bias changes 
the carrier distributions and current densities in the SiC/Si hetero-
structure. Furthermore, the increase in the applied forward voltage re-
sults in the reduction in the energy barrier and the decrease in the width 
of depletion region, Figure S3 [38]. In this case, the strain modulation on 
the electron effective mass and energy level influences significantly on 
the electron injection from n+-3C-SiC to p-Si. In other words, the 
decrease in the barrier height and the reduction in the depletion region 
width under forward bias increase the strain sensitivity of the SiC/Si 
heterojunction. This explains the considerable enhancement of the pie-
zojunction effect with large gauge factors under high forward bias. 

All experimental results show that the GFs in [100] orientation are 

larger than those in [110] orientation under all applied voltages, Fig. 4. 
This is explained by the oriented dependence of the strain modulation on 
the effective mass and energy band of electrons in SiC. Specifically, the 
modulation along [100] orientation is more significant than the other 
direction. This was demonstrated by the piezoresistive effect in n-3C-SiC 
with a longitudinal GF of − 31.8 in the orientation [100] compared to a 
longitudinal GF of − 3.7 in the orientation [110] [7]. Consequently, the 
piezojunction effect obtains higher GFs when applying stress along the 
orientation [100]. 

4. Conclusions 

This research reports the ultrasensitive piezojunction effect in a 3C- 
SiC/Si heterostructure under external bias. Cantilevers were fabricated 
along two typical orientations [100] and [110] using a wafer made of 
highly doped n+-3C-SiC on low doped (100) p-Si substrate. Experiments 
were then conducted using the beam bending method, the forward 
current through the p-n junction was measured between two vertically 
aligned electrodes for comparison. Experimental results show a linear 
relationship between the relative current change and the induced strain 
from 0 to 500 ppm, decreasing with tensile strain and increasing with 
compressive strain. At the forward bias of 8 V, the obtained GFs when 
bending the [100] and [110] oriented cantilevers are 199.7 and 173.1, 
respectively. These values are about 630 % and 540 % higher than the 
highest gauge factor of n-3C-SiC along the most sensitive orientation 
[100] reported to date in the literature. It is also interesting to note that 
these GFs are positive whilst the GFs of n-3C-SiC thin films are known to 
be negative. The sensing effect was finally explained by a hypothesis 
based on the band split and mass shift of electrons under the strain 
modulation as well as the change in the barrier height, depletion region 
width, carrier concentration, and current density under forward bias. In 
conclusion, the demonstrated piezojunction effect in the SiC/Si hetero-
junction can pave the way toward the development of ultrasensitive 
mechanical sensors. 
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