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Abstract: A significant growth of research on digital microfluidics has been achieved over the past
several decades, and the field is still attracting increasing attention for fulfilling relevant mechanisms
and potential applications. Numerous studies have been devoted to actively manipulating droplets in
a variety of fundamental and applicational scenarios. In this work, the deformation of ferromagnetic
fluid droplets is studied under an external uniform magnetic field. The droplets are precisely
dispersed on the bottom surface of a container assembled with polymer methacrylate (PMMA) plates.
Mineral oil is applied instead of air as the surrounding medium for easy stretching and preventing
water solvent evaporation in ferrofluid. The design and processing of the container are firstly carried
out to observe the shape and characterize the wettability of the droplets in the immiscible mineral oil
medium. Furthermore, the droplets’ deformation and the working mechanism are given under the
action of the horizontal uniform magnetic field. At different magnetic field intensities, the droplet is
stretched in the horizontal direction parallel to the applied field. Due to volume conservation, the
dimension in the height reduces correspondingly. With the coupling effect of magnetic force, viscous
force and interfacial tension, the contact angle first increases with the magnetic field and then basically
remains unchanged upon magnetization saturation. Consistent with the experimental results, the
numerical method clearly reveals the field coupling mechanism and the nonlinear deformation of the
sessile droplet.

Keywords: microfluidics; magnetic field; sessile droplet; wetting; profile deformation

1. Introduction

The shape and wettability manipulation of droplets on a solid surface has become a
cutting-edge focus of research in digital microfluidics which is applicable in the printing
and coating industry, chemistry, biology, and so on. Up to now, numerous advanced tech-
nologies have been developed for the realization of shape and wettability tunability, such as
chemical gradient [1], thermal capillary force [2,3], electrostatic force [4,5], optical force [6],
magnetic force [7–9], etc. There are certain limitations in the adaptability, strength, and
breadth of force in terms of the passive method which relies purely on the characteristics
of the liquid, solid surface, and surrounding medium. The introduction of active forces
mostly requires additional and expensive accessories, which results in the increment of
the device cost and a reduction in its reliability. Among them, the magnetic force has
attracted increasing attention due to its advantages in remote control without sensitivity to
pH and dielectric properties of the liquid medium. To realize magnetization, ferromagnetic
fluids are commonly employed as typical media with well-established numerical models
to describe the dynamics in terms of channel geometry, magnetic field distribution, and
particle concentration [10]. The functional magnetic nanofluid is envisioned for applica-
tions in biosensors with magnetic manipulation [11,12]. Moreover, potential aptness in
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micro-electronic appliances is revealed with a three-dimensional hydrodynamics model
established taking into account the nonlinear variation of viscosity with temperature [13].
The magneto microfluidic control mainly focuses on the utilization of magnetic field gradi-
ent for magnetic force generation and thus flow manipulation. As a result, the magnitude
of the magnetic force is closely related to the shape of the magnet, which puts forward high
requirements for fabrication methods. Alternatively, magnetic force can be generated with
the contribution of the susceptibility discrepancy between the magnetic and non-magnetic
fluid in digital microfluidics. In this case, a uniform magnetic field is adaptable for greatly
enhancing the integration of microfluidic devices in the equipment.

There have been numerous reports on the experimental study of active control of
ferromagnetic fluid droplets by a magnetic field. The preliminary studies include the
shape and instability of droplets under the action of a static magnetic field in terms of the
magnetic field strength, temperature, and particle size [14]. A wise selection of different
magnetic field configurations can play the required role in the application. Permanent
magnets are commonly used to change the wetting characteristics of the droplets, drag
the droplets, and realize complex physical or chemical processes such as separation and
mixing [7]. In addition, through the design and fabrication of electromagnetic fields, the
complex pre-designed movement track can be realized for ferromagnetic fluid droplets
in various directions and speeds [15,16]. The superposition of an additional permanent
magnetic field in the experimental device facilitates the enhancement of the ferromagnetic
fluid droplet magnetization. The deformation and dynamic characteristics of the droplets
are verified and analyzed as a function of droplets size, the coil current, and the viscosity of
the liquid. The process of splitting, transporting, merging, and mixing of the droplets can
be realized on the introduced solid substrate which can be switched between hydrophilic
and hydrophobic wetting modes [17]. The speed of the droplets depends significantly
on the magnetic field strength. The driving current intensity and frequency are the key
parameters of effective mixing [18]. Based on the magnetic approaches, the realization
in the detection of DNA control [19] and enzyme-labeled antibodies [20] indicates the
potential of its application in biological analysis.

The rotating magnetic field is preferred in certain cases as it can exert both radial and
axial forces on the droplets simultaneously. Concerning the frequency and intensity of
the magnetic field, an investigation is implemented for the behavior of the droplets [21]
and the interaction of magnetic particles [22]. In an experimental study, the movement
and resulting merging of the sessile droplets can be realized under a rotational field which
can be obtained by rotating a permanent magnet or multiple coils with alternating current
applied [23]. The mixing of fluids in the droplet is prompted due to the enhancement of
the viscous interaction between the magnetic microspheres and the fluid caused by the
circulation flow synchronous with the periodic magnetic field. Both the rotational and
translational motion of a magnetic fluid droplet are reported with its shape governed by
the magnetic field and the hydrodynamic flows [24].

In this work, the deformation of the ferrofluid sessile droplet is studied under the
action of an external horizontal uniform magnetic field. The droplets are placed on a
horizontal PMMA plate in a uniform magnetic field generated by a pair of electromagnetic
coils. The ferrofluid droplets are placed in the gap between the coils with the generated
magnetic field parallel to the bottom of the container. In both experimental and numerical
investigations, the ferrofluid droplet is immersed in the surrounding mineral oil for easy
stretching and mass conservation. The sessile ferrofluid droplet deforms under the action
of the horizontal magnetic field with the intensity shifted by alternating the current value.
A comprehensive working mechanism is established through the analysis of the flow field,
magnetic distribution, and the involved force.

2. Experimental and Numerical Methods

The experimental setup shown in Figure 1 is mainly composed of a computer, a charge
coupled device (CCD) camera, a set of electromagnets, and a container with mineral oil
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and ferrofluid. To observe the shape and wetting characteristics of ferrofluid droplets,
PMMA plates are designed and fabricated by laser cutting for assembling the container in
the experimental test. The ferrofluid droplets, with volume set at 1.3 µL, 2.3 µL, 3.4 µL, and
4.8 µL, are placed at the bottom of the container, keeping their remaining surface in contact
with the mineral oil introduced to reduce the interfacial tension and prevent the evaporation
of the water-based ferrofluid. Water-based ferrofluid (EMG707, Ferrotec, Livermore, CA,
USA) is used containing Fe3O4 nanoparticles with a diameter of 10 nm, a volume fraction
of 1.8%, and an initial susceptibility of 0.36. The viscosity of ferrofluid is 5 mPa·s at 27 ◦C.
The density of ferrofluid and mineral oil (M5904, Sigma, Alexandria, VA, USA) at 25 ◦C are
1.1 × 103 kg/m3 and 0.84 × 103 kg/m3, respectively. The ferrofluid droplet is generated
by a pipette (Finnpipette, Thermo Scientific, Waltham, MA, USA), which can accurately
control the droplet volume within a range of 0.5–10 µL. The magnitude of the magnetic
field can be tuned by varying the gap distance and current. In our experiment, the gap is
kept at 20.1 mm to ensure the stability, uniformity, and accurate control of the magnetic
field. With a fixed gap, the electromagnetic field strength that alters with the current input
(0–70 A) is measured by a Gauss meter (Model 410, Lake Shore, Westerville, OH, USA).
The calibration of the field is implemented with a comparison with the data given in the
manufacturer’s manual sheet. The shape of the droplet is recorded by the CCD camera
(Pulnix, progressive scan camera, JAI Inc., Yokohama, Japan) and further analyzed by a
customized MATLAB 2019b program.
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Figure 1. Experimental setup and imaging system for sessile droplet deformation.

The systematic numerical model is shown in Figure 2a in which the droplet volume
is set at 4.8 µL. The size of the container is 6 × 5 × 1.8 mm. Initially, a 1.31844 mm radius
hemisphere is placed inside the container to act as a ferrofluid sessile droplet. The physical
parameters are the same as the experiment. A uniform magnetic field is generated in X
direction with a magnetic potential of 20–3060 A applied on the left wall of the container.
The right wall is set with a zero scalar magnetic potential with the others employing the
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magnetically insulated boundary condition. The initial magnetic field intensity with the
corresponding flux density is presented in Figure 2b with various potentials adopted on the
boundary. The numerical simulation is implemented with the governing equations solved
on a Cartesian staggered grid by the finite element method with the interface tracking
between ferrofluid and mineral oil two-phase flow achieved by the level-set method. The
calculation is accomplished with the coupling model of the magnetic field, fluid flow, and
interface tracking. Subsequently, the initial spherical cap shape of the droplet is deformed
and governed by the force balance. Gravitational force is considered in the calculation to
have a thorough understanding of the underlying mechanism. The ferrofluid used in the
study is assumed as a uniform sample containing 1.8 vol% 10 nm Fe3O4 nanoparticles. The
initial shape of the droplet depends on surface tension, viscous force, and gravitational
force which is presumed to be constant. The grid-independent study is accomplished by
calculation with grids at 288,060 and 550,523. The height and width of the droplets show a
relative error of less than 5%. As a result, the following results are provided for the model
with grid number 288,060.
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The magnetic field distribution can be solved by Maxwell equations for a non-conducting
working fluid,

∇ · B = 0 (1)

∇×H = 0 (2)

−∇Vm = H (3)
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B = µH = µ0µrH (4)

where H, B, Vm, µ0, and µr are magnetic field strength, magnetic flux density, magnetic
potential, vacuum permeability 4π× 10−7NA−2, and relative permeability. The volumetric
force exerted by a magnetic field on an isotropic media with µ = µ(H) can be expressed
as [25–27],

fm = µ0M∇H =
1
2

µ0χm∇H2 − 1
2

µ0H2∇χm (5)

where M = χmH with M and χm stands for the magnetization and susceptibility. The inho-
mogeneity in both the magnetic field and susceptibility contributes to the magnitude and
distribution of the magnetic force density. The permeability of the sample in our study is as-
sumed and defined to vary linearly with the level set function in the computational domain,

µr = 1 + χmΦ (6)

where Φ is the level set function. The value of 0 and 1 signifies the relative permeability of
vacuum and ferromagnetic fluid, respectively. When Φ lies between 0 and 1, it smooths the
distribution of excessive permeability at the interface.

The magnetic force on the droplet purely relies on the magnetic susceptibility, the vol-
ume of the droplet and the externally applied magnetic field. By referring to the theoretical
work on field-dependent magnetic permeability, the magnetization and susceptibility for
ferrofluid are expressed by the Langevin function [28] with magnetic susceptibility shifting
with the magnetic field,

M(H) = φMd

(
coth(α)− 1

α

)
(7)

α = m
µ0H
kT

=
πµ0HMdd3

6kT
(8)

χm =
dM(H)

dH
= φMd

α

H

(
−csch2(α) +

1
α2

)
(9)

where φ, m, Md, and d are the volume fraction, magnetic moment, saturation magnetization,
and diameter of magnetic nanoparticles, k is the Boltzmann constant, and T is the tempera-
ture which is taken to have the value of the room temperature. In this work, we customized
the magnetization curve of the ferrofluid droplet according to the droplet shape obtained
in the experiment with the corresponding χm-H curve shown in Figure 3. A certain degree
of deviation is observed although the magnetization curve fitted by experimental data
has the same trend as the regular Langevin equation. It is evident in our study that the
magnetization involves the nonlinear region since the maximum field strength reaches
6.15 × 105 A/m at the applied potential of 3680 A. For H less than 6666.7 A/m, the mag-
netic susceptibility of ferrofluid is around 0.36. The magnetic susceptibility drops sharply
when the magnetic field strength exceeds the critical value.

The flow field of the incompressible and Newtonian fluid is governed by the following
continuity and Navier–Stokes equation,

ρ∇ · u = 0 (10)

∂(ρu)
∂t

+ u · ∇(ρu) = −∇P + µ∇ ·
(
∇u +∇uT

)
+ f’ (11)

where u is the velocity of the fluid, P is the pressure, µ is the dynamic viscosity, and
ρ is the density of the fluid. The source term f’ is the volumetric force, including the
magnetic, gravitational force, and interfacial tension. The discontinuity of physical property
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parameters is handled by the linear function of the level set equation. The interfacial tension
per unit area on the droplet interface can be expressed as [29],

fσ = σδκn (12)

κ = −∇ · n (13)

δ = 6|Φ(1−Φ)| · |∇Φ| (14)

where σ is the interfacial tension, δ is the Dirac function, which is only non-zero at the
droplet interface, κ is the interface curvature, and n is the unit normal vector of the interface.
To characterize the deformation of droplets, the magnetic Bond number is defined as the
ratio of the magnetic field force to the interfacial tension at the initial state before stretching,

BO =

∣∣∣∣ f
fσ

∣∣∣∣ = µ0χm∇H2 − µ0H2∇χm

2σδ
R0 (15)

where R0 is the radius of the droplet. The moving of the contact line is governed by a
balance between the interfacial tension and viscous force [30],

nwet · u = 0 (16)

fwet = σδ(nwet · nint − cos(θw))nint −
µ

β
u (17)

n · (ε∇Φ−Φ(1−Φ)
∇Φ
|∇Φ| ) = 0 (18)

where nwet is the normal unit vector of the wall, fwet is the net force along the wetting plane,
nint is the unit vector in the fluid motion direction, β is the slip length which defaults to be
the grid cell size, and ε indicates the interface thickness with the default value as half of
the grid size which is of the order of the micron in the following calculation. The applied
field is also assumed to have a collinear relationship with the liquid magnetization which
is independent of temperature.
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3. Results Analysis and Discussion

In the experiment, we tested and analyzed the height and base diameter of the droplet
at various currents. Different droplet volumes are observed in the experiment, with larger
volumes producing greater magnetic field forces, Figure 4. For ferrofluid droplets dispersed
on a smooth non-magnetic solid substrate, the liquid partially wet the surface with an
ellipsoidal meniscus formed under the effect of gravity and interfacial tension. At the
beginning, the numerical calculation is implemented with no magnetic field for the initial
value of surface tension by fitting the ferrofluid droplet shape with the experimental image.
With a horizontal field applied, the central region of the droplet elongates symmetrically
along the field direction due to the magnetic stress which has a maximum at the left and
right tip of the droplet. On the boundary, the magnetic field affects the force balance under
equilibrium conditions in the form of magnetostrictive pressure, magnetic normal pressure
and fluid-magnetic pressure. The increase in current gives rise to the enhancement in
magnetic field strength. Consequently, the droplet is stretched horizontally with the height
decreasing correspondingly. In the numerical study, the droplet is fixed at 4.8 µL in volume
for comparison with the experimental results.
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Figure 4. The experimental results for deformation of droplets at different volumes with and without
magnetic field.

The images for the deformed droplet at the volume of 4.8 µL taken at different magnetic
potentials are presented in Figure 5a with the red line standing for the interface extracted
from the numerical calculation. Both the experimental and numerical results show a
stronger deformation at a relatively larger magnetic potential. Upon reaching a critical
value of the magnetic potential, the droplet will not continue to the deformation due to the
magnetization saturation of the ferrofluid. With the applied magnetic potential at 1000 A,
the volume distribution of the droplet at different time steps is shown in Figure 5b. The
deformation is almost instant, taking about 40 ms for the initial hemispherical shape to
deform to an elliptical shape. In the deformation process, the force balance between the
droplet and PMMA surface has a significant effect on the droplet shape, especially in terms
of its influence on the contact angle. The enhancement of the magnetic field makes the
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interface of the sessile drop move farther than the contact line in the horizontal direction,
resulting in the increment of the contact angle. It is worth mentioning that the wetting
behavior in the experiment will not restore to the original state with the magnetic field
turning off due to the surface effect at the contact line, viscous loss, surface dissipation, etc.
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the contour of the droplet is compared with the experiment; (b) At Vm = 1000 A and t = 0–400 ms, the
shape of the sessile droplet.

The magnetic field distribution is shown in Figure 6a,b with both the field strength and
flux density at a 1000 A magnetic potential. The discrepancy of magnetic susceptibility is
defined on the droplet circumferential which is tracked by the level-set method. Moreover,
the nonlinear magnetization of ferrofluid is considered as a function of the magnetic flux
density. Both the magnetic field gradient and the susceptibility gradient contribute to the
magnetic force and act on fluid flow and interface deformation. With the corresponding
deformation of the droplet, a further ensuing alteration of the magnetic field distribution
results in turn due to the transition of the liquid magnetization varies with the level
set function. In addition, the distribution of the magnetic field reflects the effect of the
level set function on the smooth assignment of the magnetic permeability. After reaching
saturation with the magnetic susceptibility of the ferrofluid varying negligibly with the
magnetic field, the balance between magnetic force, surface tension, viscous force, and
gravity ensures a stable shape of the droplet. Both the magnetic field strength and flux
density follow the negative direction of the X axis. Accordingly, the flow field distribution
is shown in Figure 6c. During the stretching process, the flow in the droplet is obviously
accelerated with liquid moving to both sides in a regular direction corresponding to the
droplet deformation. Upon reaching 400 ms, the magnitude of the velocity decreases to
form a stable state. In addition, a higher velocity value appears on both sides of the droplet,
resulting in internal circulation.
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To further analyze the role in the deformation process of the droplet, the magnitude
of the magnetic force and surface tension exerted on the droplet is collected along the
horizontal line at the cross-section as shown in Figure 7. Additionally, the volumetric
magnetic force fx is further illustrated separately in terms of the fractions contributed
by magnetic field gradients fx1 and magnetic susceptibility gradients fx2. In this study,
the numerical results show the same magnitude of contribution of the magnetic force
component. On both sides of the droplet, the magnetic force points in the direction of
elongating the droplet. The component of the magnetic force in the Y and Z directions is
negligible compared with that in the X direction. In general, the surface tension is equal
at all points on the droplet surface, so that the droplet maintains a state of minimum
surface area, forming a spherical shape. As the droplet deforms, an uneven distribution of
surface tension emerges on the interface due to the change in curvature. The X-direction
component of the interfacial tension, which is larger than that of the magnetic force, points
to the interior of the droplet. The higher interfacial tension is mainly concentrated on both
sides of the droplet due to the larger curvature that is caused by the deformation of the
droplet. A stronger magnetic field would give rise to a severe deformation which enhances
the maximum value of interfacial force.

To generalize the understanding of the process, the non-dimensional magnetic Bond
number is preferred for the characterization of the deformation. Under different magnetic
potentials, the magnetic Bond number of the droplets is shown in Figure 8. Before undertak-
ing deformation, the magnetic Bond number is calculated with the data at the initial state
by taking the ratio of the maximum value of volumetric magnetic force to the maximum
value of the interfacial tension component in X direction. With the increase of the applied
magnetic potential, the magnetic Bond number gradually increases and finally tends to
be constant. At the initial stage of the deformation, the periphery of the droplet is regular,
which results in a relatively small value of the maximum interfacial tension. Hereafter, the
droplet deforms rapidly in less than 10 ms with the effect of the wetting and the magnetic
force. For the deformed droplet, there would be a sharp decrease in the magnetic Bond
number that appears close to the solid wall due to the tremendous increase in the interfacial
tension and negligible change in the magnetic force. With the magnetic potential fixed
at 1000 A, the droplet no longer deforms significantly after about 0.1 s with a constant
magnetic Bond number.
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The comparison of the height and width of the droplets under different magnetic
Bond numbers is shown in Figure 9a,b. Both the experimental and numerical results are
analyzed with typical images for straightforward observation of the droplet shape. With the
increase of BO, the droplets are gradually stretched and finally tend to be stable. The shape
and dimension of the sessile droplet are impacted by the generated deformation energy
in the process varying with magnetic Bond number due to the shift of the magnitude
and distribution of magnetic force inside the droplet. By referring to the definition in
Equation (5), the distribution of magnetic force on the droplet is strongly affected by the
strength of the magnetic field gradient which is tunable with the magnetic Bond number.
Furthermore, the change in orientation of the magnetic moment in the magnetic field results
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in an alteration in magnetic susceptibility. The shape of the sessile droplet is determined by
the combined impact of the above-mentioned factors.
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The significant deformation that occurs at the preliminary stage indicates a vigorous
interaction between the magnetic moments which gives rise to a strong internal magnetic
force on the sessile ferrofluid droplet. In this study, the maximum magnetic force on the
XOZ cut plane varies from 8325.5 to 36,912 N/m3 for potential in the range of 20–3680 A.
The magnetization saturation leads to a sharp reduction of the magnetic susceptibility,
resulting in a stable magnetic force. The extent of the droplet deformation is almost
linearly determined by the magnitude of the magnetic Bond number. The experimental
and numerical results agree well with each other, indicating a more comprehensive and
systematical study of the partial-wetting sessile ferrofluid droplet deformation in a uniform
magnetic field.

4. Conclusions

In this work, the deformation characteristics of ferrofluid in a mineral oil medium are
studied in contact with a PMMA plate under the action of the external uniform magnetic
field. The effect of the magnetic field on the shape of the droplet is measured by experiments
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followed by analysis and discussion on the deformation process. For a more comprehensive
understanding of the working mechanism, numerical simulation is conducted considering
the coupling solution of fluid flow, magnetic field, and interface tracking. The droplet
parameter varies with different liquid volumes and magnetic field strength. The increase in
liquid volume leads to the increase of magnetic force which affects the equilibrium state
on the contact line and thus the motion accordingly. Therefore, the balance established by
magnetic force, interfacial tension, and viscous force determines the shape of the sessile
droplet including the droplet height, the base diameter, and the contact angle. The results
confirm and support the uniform magnetic field to be an effective control method, which
has a guiding role in the application of ferrofluid sessile drops in various fields.
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