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A B S T R A C T   

Acoustic levitation is a versatile technique for the non-contact handling of both solid and liquid samples, yet its 
potential remains underutilized in container-less processing and lab-on-a-drop application. This study demon
strates the efficient use of acoustically levitated droplets as microgravity simulators on earth similar to clinostat. 
Using a simple and affordable non-resonant single-axis acoustic levitator called TinyLev, we first investigate the 
impact of applied voltage and droplet volume on the shape and rotational motion of levitated water droplets. 
Furthermore, we examine the rotational motion of suspended microparticles within the droplets. Our findings 
reveal the feasibility of using the levitated droplets as a miniaturized microgravity simulators on earth.   

1. Introduction 

Levitation involves suspending solid particles or fluid droplets in the 
air or another medium to counteract gravity. This technique offers 
numerous advantages in container-less processing [1,2] and lab-on-a- 
drop applications [3,4]. The concept has found applications in mate
rial science [5], analytical chemistry [6], fluid dynamics [7], and 
biophysics [8]. Levitation can be achieved through optical [9], acoustic 
[10], magnetic [11], aerodynamic [12], and electrostatic [13] forces 
[14]. However, optical and aerodynamic levitation requires expensive 
and sophisticated equipment, while electrostatic levitation is limited to 
electrically charged samples. Magnetic levitation requires a high mag
netic field and magnetic objects. In contrast, acoustic levitation can 
levitate any type of materials without a specific property [15]. Acoustic 
levitators with a single-axis configuration are commonly used for 
acoustic levitation. They are categorized as resonant [16] or non- 
resonant [17]. Resonant levitators use an acoustic emitter and 
reflector to create a standing wave at resonance, whereas non-resonant 
levitators use emitters on both sides to generate the standing wave 
without requiring distance tuning. 

Digital microfluidic platforms have gained importance in the rapidly 
growing field of microfluidics. Common platforms include liquid drops, 
liquid marbles, and core–shell beads [18,19]. Liquid marbles consist of 
liquid droplets covered with a hydrophobic powder, while core–shell 
beads have a solid shell surrounding a liquid droplet. The ability to 

acoustically levitate these platforms provide an opportunity to investi
gate their dynamics, such as equilibrium shape [20,21], internal flow 
[22–24], and oscillation [25,26]. This capability of acoustically levi
tated digital microfluidics platforms has found applications in crystal
lisation [27], self-assembly [28], material solidification [29] and 
biochemical reaction [24,30]. However, the potential of acoustically 
levitated digital microfluidic platforms to simulate microgravity on 
earth remains unexplored. The simplicity, affordability, and compact 
nature of basic acoustic levitation systems make them suitable for non- 
contact container-less liquid sample handling and microgravity 
simulation. 

This paper reports the investigation of acoustically levitated droplet 
as a clinostat and simulate microgravity on Earth. A clinostat is simple 
and widely used microgravity simulator [31], which takes advantage of 
the rotational motion to neutralize gravity’s effects on samples [32]. We 
use commercially available less expensive and simple non-resonant 
single-axis acoustic levitator known as TinyLev for this study [33]. 
The research is divided into two parts. First, we focused on analysing the 
influence of driving voltage and droplet volume on the droplet’s shape. 
We quantified the shape change by evaluating the aspect ratio of the 
levitated droplet. Next, we studied the rotational motion of a suspended 
microparticle within the levitated droplet. We examine the effect of 
applied voltage and droplet volume on the particle’s rotation and 
determine the ratio of centrifugal acceleration to gravitational acceler
ation to assess the microgravity conditions experienced by the 
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suspended microparticle. 

2. Theory 

2.1. Acoustic pressure and shape change in a levitated liquid droplet 

The proposed project will utilise a single-axis non-resonant type 
acoustic levitator. The acoustic force exerted on a spherical droplet 
levitated in an acoustic field can be represented as the negative gradient 
of Gor’kov potential [34], 

F = − ∇U. (1) 

The Gor’kov potential in the complex acoustic pressure field p is 
given as, 

U = 2K1|p|2 − 2K2|px|
2
+ 2K2

⃒
⃒py
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⃒2 + 2K2
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where v is the volume of the droplet, ρ0 and ρp are the densities of the 
hosting medium and the levitated droplet respectively, ω is the fre
quency of the ultrasonic wave. c0 and cp are the speed of the wave 
through the hosting medium and the levitated droplet. px, py, and pz are 
the derivatives of the pressure p in the x, y and z directions, respectively. 
From the equations, it is evident that the effect of acoustic radiation 
force on a levitating droplet varies with its volume if other liquid 
properties remain unchanged. It should also be noted that the acoustic 
pressure field at any point r from the source of sound is represented as 
[35], 

p(r) = p0V
(
(Df(q )/d)ei(φ+kd)

)
(5)  

where V is the applied voltage to the levitator, Df is the directivity 
function which depends on the angle q between the normal to the source 
of sound and r, d is the propagation distance in space, φ is the emitting 
phase of the source and, k is the wave number. The wave number k is 
related to the wavelength λ of the sound wave by the equation, k = 2π

λ . 
This fundamental theory applies directly to a levitating droplet. The 
equations pertaining to acoustic levitation outlined above have led to 
the hypothesis that increasing the applied voltage to the levitator results 
in an amplified acoustic pressure exerted on levitated droplets. Conse
quently, this amplified acoustic pressure deforms the levitated droplet, 
which results in non-spherical drop. 

2.2. Rotational motion of acoustically levitated droplet and clinorotation 

Apart from acoustic radiation force, acoustic streaming is another 
nonlinear effect which affects the levitated droplet. Acoustic streaming 
impacts the levitated droplet’s internal and external flow fields. Red
nikov et al. analytically investigated internal flow of the levitated 
droplet and found four recirculation zones within the droplet [36]. Trinh 
and Wang reported similar four-cell pattern inside the droplet during 
their study on oscillation [37]. However, they observed the rotation of 
levitated droplets around the horizontal axis once the oscillation attains 
certain amplitude [37]. This rotation is due to misalignment between 
the vertical axes of the droplet and the levitator leading to net acoustic 
torque on levitated droplet [38,39]. The torque acting on the droplet can 
be represented as, 

τ = F.d (6)  

where F is the resultant acoustic force and d is the length of the major 
axis of the droplet. Rotation of levitated droplet breaks symmetry of 
four-cell pattern inside droplet and gives rise to single forced vortex. 
This type of flow structure is also reported in articles [38,40]. Due to 
rotation and single vortex flow structure, a microparticle suspended in 
the droplet would experience a rotation inside the droplet. The cen
trifugal acceleration of the suspended particle in a rotating droplet can 
be represented as, 

ac = rω2 (7) 

where ω is the angular velocity of the particle in rad/s and r is the 
radius of the droplet. The same can also be represented as: 

ω =
πωrpm

30
(8) 

Substituting Eq. (8) in (7) and taking the ratio of centrifugal accel
eration of the rotating particle to the gravitational acceleration gives 

ac

g
= 1.12rω2

rpm × 10− 3 (9) 

The ratio of accelerations depends on the droplet’s radius and 
angular velocity. When this ratio exceeds 1, the centrifugal force dom
inates, causing particles to experience a net outward force and move 
away from the centre of rotation. Conversely, when the ratio is below 1, 
particles move towards the centre, counteracting both centrifugation 
and sedimentation. However, when the ratio equals 1, the two forces 
balance each other, resulting in a state of weightlessness or microgravity 
as particles rotate in a circular motion without moving towards or away 
from the centre. To simulate microgravity, the clinostat maintains this 
ratio below 10-3. In our experiments, we will investigate the influence of 
droplet volume and applied voltage on ωrpm and endeavour to simulate a 
state of near microgravity in acoustically levitated droplets. 

3. Materials and methods 

3.1. Experimental setup 

Fig. 1a illustrates the schematic of the experimental setup. The 
central component of the setup is the TinyLev acoustic levitator [33], 
which is fabricated using 3D printing technology. The TinyLev model 
incorporates 72 Manorshi ultrasonic transducers, with 36 transducers 
positioned on each side. These transducers, measuring 10 mm in 
diameter, operate at a frequency of 40 kHz and convert electrical energy 
into acoustic energy. They are arranged in a concentric circular pattern, 
with a spacing of 12 mm between each transducer. The overall packing 
radius of the circular configuration is 4.5 cm. The transducers are 
mounted on two circular curved plates, which are 11 cm apart from each 
other. The curvature enhances the trapping force at the focal point. To 
excite the transducers, a square wave is generated using a nano Arduino, 
which is then amplified by the L297N dual H-bridge stepper motor 
driver. The TinyLev device is powered by a variable DC power supply 
(Keithley 2200–30-5). 

For visual observation of the levitated object, a high-speed front 
camera (XIMEA USB 3.0 1.3 MP B/W) with an Edmund Optics 1.0 ×
SilverTLTM Telecentric lens, as well as a side camera (XIMEA USB 3.0 
1.3 MP RGB) with an Edmund Optics VZMTM 450 Zoom Imaging lens, 
are employed. The cameras are connected to laptops, capturing 2,000 
frames at a rate of 100 frames per second (FPS). To enhance image 
quality, white light sources are affixed to the back and side of the 
TinyLev model. 

3.2. Experimental procedure 

Deionized water, combined with green, fluorescent polyethylene 
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microspheres (Cospheric, 27–32 μm, 1.00 g/cc), served as the working 
liquid for the experiment. Using a micropipette (Eppendorf Research, 
1–20 μl), droplets with volumes of 5, 10, and 15 μl, each containing a 
single microparticle, were precisely positioned at the centre of the lev
itator cavity. To minimize disturbances caused by air, a transparent 
cover was applied to the levitator after successful droplet levitation. 
Videos were recorded to capture the behaviour of the levitated droplets. 
Voltage variations were introduced, ranging from 7.5 V to 9 V in in
crements of 0.5 V, and each experiment was conducted five times. The 
impact of voltage on the droplets was assessed by analysing the aspect 
ratio (a/b) of the levitated droplets. Where a and b are the lengths of the 
semimajor and semi-minor axis of the droplet. The bounding box 
toolbox in Python was used to find out a and b from the images (Fig. 1b). 
Moreover, from the measured aspect ratio, sound pressure can be 
evaluated with Marston’s work on equilibrium shape of the levitated 
droplet [41]. For a given aspect ratio (a/b), sound pressure can be 
calculated as, 

p =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a

b − 1)
(2a

b − 1)( 3R
64σpρpc2

0
)(1 + 7

5(kR)2
)

2

√
√
√
√ (10)  

where, R is the equatorial radius of the drop, and σp is the surface tension 
of levitated droplet. The parameters to compute the pressure is shown in 
Table 1. 

The shortest radius of the rotating microparticle from the horizontal 
axis of the levitated droplet was measured to calculate the minimum 
microgravity experienced by the particle (Fig. 1c). The angular velocity 
of the particle is calculated by the equation, 

ωrpm =
60
t

(11)  

where, 

t =
Number of frames for one rotation
frames per second set in the camera

(12)  

4. Results and discussions 

4.1. Simulation of acoustic field 

Visualisation of the acoustic pressure field generated by transducers 
can be done with Levitate toolbox developed in Python language [42]. 
We simulated the TinyLev design according to its geometries. Fig. 2a and 
b shows the acoustic pressure distribution of the levitation at 10 V and 
20 V respectively. The results of the simulation emphasise the effect of 
applied voltage on the shape of the droplet since the acoustic pressure 
shows a clear increase with applied voltage. 

4.2. Effect of applied voltage and the volume on the shape of the levitated 
droplet 

Fig. 3 illustrates the characteristics of acoustically levitated droplet. 

Fig. 1. (a) Experimental setup. (b) Measurement of length of major and minor axis using bounding box tool in python (front camera). (c) Measurement of angular 
velocity from picture frames (side camera). 

Table 1 
Parameters to compute sound pressure.  

Parameter Value 

Surface tension of water (σp) 0.072 N/m 
Density of water (ρp) 997 kg/m3 

Speed of sound (c0) 343 m/s 

Wavenumber (k =
2π
λ
)

732.3 m− 1  
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Data points are fitted with suitable fitting curves. Fig. 3a shows that the 
aspect ratio of the levitated droplet increases as the applied voltage is 
increased. This is because the increased voltage leads to higher acoustic 
pressure on the droplet. The percentage increase in aspect ratio from 7.5 
V to 9.0 V is 7.16 % for a 5 µl droplet, 11.86 % for a 10 µl droplet, and 
7.64 % for a 15 µl droplet. The effect of increased voltage is more sig
nificant for smaller droplets, where the surface tension dominates, and 
the droplet tends to be nearly spherical. As the acoustic pressure in
creases, the droplet becomes compressed and takes on an elliptical 
shape, which is more noticeable with higher acoustic pressure. In larger 
droplets, where the gravitational force is already dominant, the increase 
in aspect ratio is less pronounced with increased voltage. 

In Fig. 3b, it is evident that the aspect ratio of the droplet increases 
with volume at a particular voltage. This is because larger-volume 
droplets experience a stronger gravitational force. The percentage in
crease in aspect ratio from 5 µl to 15 µl for voltages 7.5 V, 8.0 V, 8.5 V, 
and 9.0 V is 10.4%, 21.7%, 18.1%, and 9.9% respectively. Therefore, 
both volume and applied voltage contribute to the shape of a levitated 
droplet. Sound pressure at any node can be calculated from the aspect 
ratio of the levitated droplet using Eq. (10). Fig. 3c shows the relation
ship between voltage and acoustic pressure at a particular node. The 
acoustic pressure increases with voltage like what was observed in the 
simulation. The percentage increase in acoustic pressure from 7.5 V to 
9.0 V is 16.6%. 

4.3. Effect of applied voltage and the volume on flow dynamics of the 
levitated droplet 

Fig. 3d illustrates the relationship between the angular velocity of 
the dispersed microparticle and volume at a constant voltage. It is 
evident that the angular velocity decreases with increasing volume. This 
reduction is attributed to the inertia of larger droplets. The decrease in 
angular velocity from 5 µl to 15 µl for voltages 7.5 V, 8.0 V, 8.5 V, and 
9.0 V is 63.3, 51.7, 49.8, and 51.3% respectively. This trends of the 
results of our study agree with the results of the study of Saha et al. [38] 
and Yan et al. [40], however more insight into this relation can be a 
scope of future study. 

In Fig. 3e, the relationship between the angular velocity of the 
microparticle and the applied voltage is presented. The results indicate 
that the impact of voltage on the angular velocity is minimal. Despites 
the increase in applied acoustic pressure with voltage, the resultant force 
(F in Eq. (6)) experiences negligible changes. The change in acoustic 
pressure with voltage has significantly deformed the droplet, however 
this change is not enough to change the angular velocity of the droplet. 
The change in angular velocity for droplet volumes of 5 µl, 10 µl, and 15 
µl is 1.2%, 4.3%, and 30.8% respectively, as the voltage ranges from 7.5 

V to 9.0 V. The magnitude of variation in the rotation is more significant 
for larger volumes due to the higher value of d in those droplets. 
Increased d value combined with the negligible increase in F value ac
counts for the observed effect. From the experimental findings, it can be 
concluded that the effect of droplet volume on angular velocity is more 
pronounced than the influence of applied voltage. 

The Supplementary videos S1 (front camera) and S2 (side camera) 
provide visual evidence of the rotation of particles within the levitated 
droplet. As time progresses, the particles exhibited a cyclic motion, 
moving towards and away from the droplet’s centre. The particle was 
supposed to be rotating at a stable position from the horizontal axis. 
However, due to air perturbations, the levitated droplet experiences 
slight oscillations, causing the internal flow to influence the particle’s 
displacement away from the centre. This phenomenon explains the 
observed cyclic movement along the horizontal axis. 

To quantify the relationship between centrifugal acceleration and 
gravity, the smallest radius of rotation of the particle from the droplet’s 
centre was measured. By utilizing Eq. (10), the ratio of centrifugal ac
celeration ac to gravitational acceleration g is calculated for different 
voltages and volumes. Fig. 3f illustrates that the lowest value of ac

g , 6 ×
10-2, was achieved at 15 µl and 7.5 V. This finding indicates that the 
centrifugal acceleration within the droplet is less significant compared 
to gravitational acceleration. Furthermore, the correlation between 
angular velocity and volume suggests that increasing droplet volume 
further decreases the centrifugal acceleration. Thus, these results sup
port our hypothesis that with appropriate engineering and control, 
acoustic levitation has the potential to function as a clinostat, effectively 
simulating microgravity conditions. 

5. Conclusions 

The initial part of this paper presents the theoretical framework for 
the shape change and rotational motion of acoustically levitated water 
droplets using the low-cost non-resonant TinyLev acoustic levitator. 
Experimental investigations were conducted to examine the impact of 
applied voltage and droplet volume on the shape (aspect ratio) of the 
levitated droplet and the rotational motion of the microparticle within 
it. The results revealed that both applied voltage and droplet volume 
have a significant influence on the droplet’s shape. However, the 
angular velocity is predominantly affected by the droplet volume rather 
than the applied voltage. 

To assess the microgravity conditions inside the droplet, the ratio 
between centrifugal acceleration and gravitational acceleration was 
determined. The functional microgravity achieved by TinyLev was 6 ×
10-2. The experimental results demonstrate the potential of acoustically 
levitated droplets as a viable option for simulating microgravity on earth 

Fig. 2. Simulated sound pressure distribution for TinyLev at (a) 10 V and (b) 20 V.  
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using a clinostat. 
Nevertheless, it is important to acknowledge the inherent limitations 

of the current levitation equipment, particularly in terms of maximum 
acoustic power generation and droplet volume capacity. The presence of 
air perturbations poses challenges in maintaining droplet stability and 
inhibits the ability to sustain microgravity conditions for extended du
rations. However, based on our current experiment, we hypothesise that 
a more powerful levitator and careful engineering can lead to improved 
microgravity conditions within the levitated droplet. Further extensive 
research in this direction is planned for the future. 
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