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A B S T R A C T   

The magnetic body force is critical for modelling of convection in ferrofluids. Despite a long 
history in the development of the theories for ferro-hydrodynamics, literature from the last five 
years shows that a universal consensus has not been reached concerning the formulation of this 
term for ferrofluids. We present an updated derivation of the body force directly from the Lorentz 
force and Maxwell’s equations. The derivation requires that the differential volume experiencing 
the body force only contains complete dipole current loops. This has the effect that an additional 
surface integral term to account for bound surface current is not needed when modelling situa-
tions where the ferrofluid has interfaces with other materials. We compare results from our 
derived body force with five other formulations from the literature for the case of a single 
conductor in ferrofluid under static and convection conditions. Most formulations become similar 
in the limit of small magnetic susceptibility. For a susceptibility of the order of 1, as is typical for 
ferrofluids, the calculated body force from the formulations differed by a factor of about four, 
greatly affecting thermomagnetic convection predictions for a heated microwire.   

1. Introduction 

In modelling ferrofluid motion, variations in magnetic fields and magnetic properties due to temperature and concentration 
gradients induce important body forces. Through such body forces, temperature gradients in ferrofluids subjected to magnetic fields 
give rise to a unique heat-transfer phenomenon known as ‘thermomagnetic convection’ that can be used to enhance heat transfer 
(Priyadharsini & Sivaraj, 2022; Ghosh et al., 2021; Rong et al., 2022). Particle concentration gradients may arise through thermo-
phoresis or magnetophoresis, i.e., the migration of magnetic nanoparticles in the carrier fluid under the influence of temperature 
gradients and applied magnetic fields, respectively (Khashan et al., 2011a; Khashan et al., 2011b; Leong et al., 2015; Shakiba & 
Vahedi, 2016; Soltanipour, 2020; Sun et al., 2019). By controlling the parameters of magnetic fields and the properties of ferrofluids, 
flow patterns can be controlled which opens a variety of applications in cooling enhancement, bio-magnetic separation, drug delivery, 
and micro-mixing. 

Characterising the magnetic body forces allows for the simulation of fluid motion in practical cases. The macroscopic body force in 
a ferrofluid is the sum of the Lorentz forces at atomic/molecular level, i.e., the forces applied to electrons undergoing partially aligned 
circular motion in a magnetic field. In continuum fluid dynamics, this force is expressed as a spatial vector field in terms of specific 
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magnetic field and magnetic material properties. The obtained term is then added to the conventional Navier-Stokes equations as a 
body force, enabling prediction of the resulting fluid motion through coupling with continuity and energy equations. 

Several analytical formulations have been proposed to account for the body force from the principles of ferro-hydrodynamics. 
However, it is evident from recent discussions (Butcher & Coey, 2023; Cano-Gómez and Romero-Calvo, 2022; Cecchini, & Chio-
lerio, 2021a; Cecchini, & Chiolerio, 2021b; Engel, 2001; Huang et al., 2019; Liu, 2000; Odenbach & Liu, 2001; Petit et al., 2011; 
Romero-Calvo et al., 2020) that despite over 50 years since the earliest theoretical studies on ferrofluids (e.g. Neuringer & Rosensweig, 
1964), a ubiquitous agreement on the form of the magnetic body force has not been reached. Table 1 gives examples of the forms of the 
body force term used in some recent publications. 

Concerning the formulations for the body-force listed in Table 1 and others in the literature, experimental and theoretical work by 
Odenbach & Liu (2001) and Liu (2000) suggested that Mi∇Bi is superior to the Kelvin force, μ0Mi∇Hi for ferrofluids. They noted that 
the two terms become similar in the limit of small susceptibility (1+ χ ≈ 1) and that for ferrofluids χ is often of the order of 1 or greater 
(Bakuzis et al. (2005), Vatani et al. (2017)). Fadaei et al. (2017), Hangi et al. (2018), Shaker et al. (2021), and Bahiraei et al. (2019) 
used the body force μ0M ⋅ ∇H for a static fluid layer. Ashouri and Shafii (2017) and Saedi et al. (2019) used (μ0M ⋅ ∇)H which may be 
mathematically identical to μ0M ⋅ ∇H depending on the interpretation of ∇H. Romero-Calvo et al. (2020) studied the motion of fer-
rofluid droplets having susceptibility of 0.181 and found similarity between μ0M ⋅ ∇H and M ⋅ ∇B with additional terms for surface 
phenomena. Dixit and Pattamatta (2020) made use of result μ0M∇H by Rosensweig (1987) where M and H are the magnitudes of M and 
H, respectively. Cecchini and Chiolerio (2021a) and Vatani et al. (2019) used ∇(M ⋅ B) for the body force. However, Cano-Gómez and 
Romero-Calvo (2022) suggested that ∇(M ⋅ B) is an inaccurate body force term by showing the disparity between model and exper-
iment results in Romero-Calvo et al. (2020) 

Some researchers include surface forces in their analysis. Engel (2001) suggested that a weakness in the study by Odenbach and Liu 
(2001) was the neglect of surface forces. Romero-Calvo et al. (2020) concluded that inclusion of surface forces is essential when 
predicting the force on a droplet of ferrofluid. Petit et al. (2011) considered five general expressions for the body force term in fer-
rofluid including surface forces and concluded that the total force for the bulk material is similar, but the local body force terms are not. 
These findings have implications for studies in thermomagnetic convection since the local (sub-surface) forces are driving the 
phenomenon. 

The relationship between magnetic susceptibility and temperature is also not in universal agreement. Goharkhah et al. (2020) 
investigated the three different magnetic force models based on different magnetic susceptibility (χ) correlations as a function of 
temperature. To investigate the impact on the thermomagnetic convection effects, they compared calculations with experimental 
results of Vatani et al. (2017) and found significant variations in predicted heat transfer. Their formulations were derived based on (M ⋅ 
∇)B where the susceptibility directly influences M. 

While ferrofluid is treated as a single fluid in many cases, the magnetic body force can be adapted for two-phase numerical analysis 
including particle-fluid interaction. Apart from estimating drag force, Van der Waals force and surfactant force on ferroparticles, 
efforts have been made to correctly formulate of the body force model for a complete analysis of magnetophoresis (Sun et al. (2019)). 
In the studies by Khashan et al. (2011a), Khashan et al. (2011b), Shakiba and Vahedi (2016) and Soltanipour (2020) the term 
μ0(M ⋅ ∇)H is used. As mentioned above, questions have been raised about this form of the body force term for high χ values so further 
investigation is also valuable for such two-phase applications. Leong et al. (2015) suggested the term M ⋅ ∇B where the volumetric 
magnetization (M) is the function of ferroparticle concentration. 

In this study we have compiled and compared commonly used formulations of the body force term in the last two decades. As 
examples to quantify the significance of differences, we consider a one-dimensional axisymmetric example in a ferrofluid with non- 
uniform susceptibility and thermomagnetic convection around a heated wire. The motivation for the work is to make further prog-
ress towards establishing the most appropriate form of the magnetic body force term for ferrofluid simulation given that there are 
multiple alternative formulations in current use. The key contribution we aim to make is a presentation of an accessible and systematic 
derivation of the magnetic body-force term from first principles with parameters clearly defined and assumptions clearly stated. 

Table 1 
Representative body force terms in recent numerical studies on ferrofluids.  

Magnetic body force term Reference 

(M ⋅ ∇)B 
Goharkhah et al. (2020) 

μ0M ⋅ ∇H 
Hangi et al. (2018), Shaker et al. (2021), 

Bahiraei et al. (2019), Fadaei et al. (2017) 
∇(M ⋅ B)

Vatani et al. (2019), Nguyen (2012) 
μ0(M ⋅ ∇)H 

Ashouri and Shafii (2017), 

Saedi et al. (2019), 

Aminfar et al. (2012, 2013) 
μ0M∇H 

Dixit and Pattamatta (2020)  
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2. Fundamental principles 

Understanding the fundamental principles is the key to obtaining the correct formulation of the body force and clarifying any 
underlying assumptions. Here we state the principles, define the relevant parameters, state assumptions, and derive the expression for 
the body force term from the Lorentz force. 

2.1. Laws of the magnetic field 

The body force comes from the motion of electrons in a magnetic field. The magnetic field and its flux density B can be defined based 
on the observed behavior of a moving charge. When a particle of charge q moves with velocity v in a magnetic field of magnetic flux 
density B, then the particle is observed to experience a force F perpendicular to both v and B. This force is expressed by the magnetic 
Lorentz force which we take to be the definition of the B-field: 

F = qv × B. (1) 

The vector field B also satisfies the following continuity equation known as Gauss’s law for magnetic fields (or Maxwell’s second 
equation) 

∇ ⋅ B = 0. (2) 

Eqs. (1) and (2) are true everywhere in the field and require no modification for fields with variations in material properties (such 
as ferrofluids with temperature gradients or concentration gradients). 

The B-field arises due to the motion of electric charges and/or changing electric fields. This can be expressed by Ampere’s Law 
(Maxwell’s third equation) where the changing electric field has been neglected: 

∮

C

B ⋅ dl = μ0IA = μ0
(
IAf + IAb

)
. (3) 

In Eq. (3), μ0 is the permeability of free space and IA is the total electric current that pierces through the surface A that is bounded by 
the closed curve, C. 

For cases where the line integral C crosses through magnetizable material such as ferrofluid, this equation is still valid but the term 
on the right-hand side includes contributions from electrons in the material moving in circular paths at a molecular level (bound 
current, IAb). To emphasize this, IA is divided into bound and free current in Eq. (3). 

2.2. Magnetization field M, magnetic field strength H and magnetic properties 

Valuable insight into magnetization M, magnetic field strength H, magnetic susceptibility χ, and magnetic permeability μ, can be 
gained by considering an infinitely long coil of wire (solenoid) with electrical current I flowing through it as shown in Fig. 1. Here we 
use this hypothetical experimental setup to unambiguously define the material properties χ and μ for a magnetically ‘soft’ magnetic 
material (such as ferrofluid) in a measurable way in terms of the number of turns per unit length of the electrical coil, electrical current, 
and the magnetic flux density. By ‘soft’ we mean the fluid does not behave like a permanent magnet, there is no hysteresis in the 

Fig. 1. Physical insight into magnetic field strength and magnetization: H can be considered the number of amp-turns per meter in an infinite 
solenoid. M can be defined as the effective number of amp-loops per meter in a magnetic material to satisfy Ampere’s law. (a) Non-magnetic 
material, (b) Magnetic material. 
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magnetization and mechanical equilibrium is quickly reached, (i.e. the relaxation time is small compared with timescales of interest so 
that H, M and B are quickly aligned in situations where the magnetic field changes direction). 

Inside the solenoid, magnetic properties and the three vector fields are uniform. H, M, and B are the magnitudes of H, M and B, 
respectively. No additional assumption needs to be made to support the uniformity of the magnetic field inside the coil except that the 
coil is tightly wound, since the uniformity can be proved easily from Eq. (3). For this case, H is the same for both materials (a) and (b) in 
Fig. 1, while B is relatively large for a magnetic material and M is zero for the non-magnetic material. 

H has units A/m but in terms of Fig. 1, it is insightful to follow an approach used by engineers who design transformers by 
expressing its units as “amp-turns per meter” (e.g. Chapman (2004). For both Figs. 1a and 1b, from dimensional analysis, “amp-turns 
per meter” yields: 

H = NI
L (applies only to the geometry of Fig. 1). 

This is not a general expression for H but applies without error or assumption to the configurations of both Fig. 1a and Fig. 1b, 
where N is the number of turns of the solenoid over the axial distance L. 

The magnetization field is due to microscopic ‘bound-current’ loops and analogous to H, can be considered to be the effective 
number of amp-loops per meter (drawn as blue circles in Fig. 1b): 

M =
NM〈IM〉

L
,

where NM is the number of atoms encountered along the path L inside the material and 〈IM〉 is the average bound electrical current that 
encircles the integration line (following the right-hand rule) per atom, so as to satisfy Ampere’s Law. Unlike H, scalar components of 
the magnetization vector M can always be interpreted as the encircling bound current per unit length along a path in the direction of 
that component through a magnetic material. Thus, generally, the three components of the vector M can be defined by considering 
paths (that are sufficiently short to be differential but long enough to justify continuum) in the three component directions. 

Having defined both B and M we are now able to define the magnetic field strength H (Jackson, (1999)): 

H ≡
1
μ0

B − M. (4) 

This definition of H is general and applies for cases with strong spatial variations and discontinuities in material properties (where 
the Biot-Savart law does not apply). In the limit of small property variations in space, the magnetic field strength becomes independent 
of magnetic properties. 

For Fig. 1b, Ampere’s law applied to the red loop gives: 
BL = μ0NI+ μ0NM〈IM〉. 
Comparing this with Eq. (4) shows that H=NI/L is appropriate for Fig. 1 and consistent with the definition of H. 
In terms of Fig. 1, we can define the equilibrium magnetic permeability, μ as: 

μ ≡
B
H

=
B

(NI/L)
|infinite solenoid, (5)  

where H is conveniently determined in terms of measurable geometry and current in the configurations of Fig. 1. 
The equilibrium magnetic susceptibility is a dimensionless magnetic material property can be defined by comparing the magnetic 

permeability of a soft magnetic material to that of a vacuum: 

χ ≡
μ
μ0

− 1. (6) 

Under the proposed definitions in Eqs. (5) and (6), the permeability and susceptibility are not limited to the linear region of low 
magnetic field strength but also continue to apply to the saturation region where a larger current is applied to the solenoid in Fig. 1b. 
Thus, both material properties are generally non-linear functions of the magnetic flux density but may be approximately constant for 
low magnetic fields. Noting that B and H are aligned, the suitable constitutive relationship for ferrofluid consistent with Eqs. (5) and 
(6) is: 

B = μ0(1 + χ)H. (7)  

2.3. Treatment of bound current in Ampere’s Law 

As illustrated in Fig. 1b, the magnetic material may be modelled as many microscopic Amperian dipole loops of electric current, 
each contributing to the magnetic field in accordance with Ampere’s law. The stronger the field B, the better the alignment and the 
more the magnetic field is enhanced. Here we show that this definition of M is robust and can be used easily to derive familiar and 
useful forms of Ampere’s Law applicable to ferrofluid. 

Since the components of M may be understood as the encircling bound current per unit length in the component direction, and the 
Amperian current loops of interest are only those that occur along the path C (e.g. Fig. 1b), Ampere’s law (Eq. (3)) becomes: 
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International Journal of Engineering Science 192 (2023) 103929

5

∮

C

B ⋅ dl = μ0IAf + μ0

∮

C

M ⋅ dl, (8)  

where the second term on the right-hand side is the contribution of bound current. Making use of Eqs. (4) and (7), this becomes: 
∮

C
B ⋅ dl = μ0IAf + μ0

∮

C

χ
μ0(1+χ) B ⋅ dl.

Combining the two integrals gives: 
∮

C
H ⋅ dl = IAf .

In differential form, this can be written as: 

∇ × H = Jf . (9)  

where Jf is the electric current density (A/m2) due to motion of free electrons. Since ferrofluid is typically a poor electrical conductor, 
Eq. (9) may be simplified to: 

∇ × H = 0. (10) 

Thus, Ampere’s equation in this form is well suited to a ferrofluid with variable magnetic properties and the underlying assumption 
in Eq. (10) is that the timescale to reach mechanical equilibrium (alignment of H, M, and B) is small. 

It is useful to also express the differential form of Ampere’s law in terms of magnetic flux density. In the limit of a small loop C, the 
integrals become curls and Eq. (8) becomes: 

∇ × B = μ0Jf + μ0(∇ × M) = μ0Jf + μ0Jb. (11) 

With no free currents this becomes: 

∇ × B = μ0Jb, (12)  

where Jb is the bound current density. Thus Eq. (12) shows that ∇ × B ∕= 0 for ferrofluids since the magnetizable material generally has 
bound currents. Also, ∇ × M ∕= 0 for ferrofluids but rather: 

∇ × M = Jb. (13) 

Eq. (13) is not an expression of Ampere’s law but rather is a mathematical consequence of the cyclic integral on the right-hand side 
of Eq. (8) becoming a curl in the limit of a vanishingly small integration loop divided by the encircled area. 

2.4. Differential magnetic loop model 

To obtain the body force, it is necessary to link the Lorentz force (Eq. (1)) to the magnetization and magnetic flux density. Fig. 2 
shows our proposed Amperian current loop model to represent the magnetization of a differential element. The differential element is 
large enough so that there are many microscopic dipole current loops contained within the element (a). The black arrows show the 
magnetization vector components while the green arrows represent an equivalent flow of electrical current associated this magneti-
zation. The hexahedral shape makes it straight forward to calculate the Lorentz force from the magnetization and the magnetic flux 
density field, B. It is assumed that the three components can be treated separately, and the principle of superposition applies. Some 
example Lorentz force components corresponding to the ê2 -component of the body force are shown (orange arrows). Similar sets of 
forces exist for ̂e1and ̂e3 components. The resultant force divided by the volume of the element gives the required magnetic body force 
per unit volume on the element. 

Each of the forces shown in Fig. 2 can be written down directly from the Lorentz force (Eq. (1)) and the definition of magnetization 
(encircling bound current per unit length). To do this, Eq. (1) can be re-expressed as: 

Fig. 2. Differential Amperian Current Loop Model showing contributions to body force in the ê2 direction (orange arrows). (a) Microscopic current 
loops, (b) M3Δx3 amps, (c) M1Δx1 amps, (d) M2Δx2 amps 
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F = Idl × B,

where F is the magnetic Lorentz force on a conductor of differential length dl with electrical current I. For example, for F21|x2 
shown in 

Fig. 2(c), the current is the magnetization component M1 multiplied by the length of the cell Δx1, the length of the conductor is the 
length of the green arrows on the side of the cell (i.e. Δx3) and the component of B that will cause a Lorentz force in the ̂e2 direction is 
B1ê1. The direction of the green arrows follows the right hand rule for the magnetization. Thus for this force: 

− F21|x2
ê2 = Idl× (B1 ê1) = (M1Δx1)( − Δx3 ê3)× (B1 ê1) = − (M1Δx1)Δx3B1 ê2. 

It can also be seen in Fig. 2 that the forces come in pairs. For example, using the first term of the Taylor series expansion for B1 at 
position x2+Δx2: 

− F21|x2 + F21|x2+Δx2 = − (M1Δx1)Δx3B1 + (M1Δx1)Δx3

(
B1 + Δx2

∂B1
∂x2

+ ⋯
)

= M1Δx1Δx2Δx3
∂B1
∂x2

. 

Adding all the forces for the ê2 direction and dividing by the volume of the element gives: 
f2 = M1

∂B1
∂x2

+ M3
∂B3
∂x2

− M2
∂B1
∂x1

− M2
∂B3
∂x3

. 
Making use of Maxwell’s 2nd Law (Eq. (2)) gives 
f2 = M1

∂B1
∂x2

+ M2
∂B2
∂x2

+ M3
∂B3
∂x2

. 
Similarly 

f1 = M1
∂B1

∂x1
+ M2

∂B2

∂x1
+ M3

∂B3

∂x1
,

and 
f3 = M1

∂B1
∂x3

+ M2
∂B2
∂x3

+ M3
∂B3
∂x3

. 
This gives our derived form of the magnetic body force in Cartesian coordinates. Note that the same result will appear if 

magnetization is defined as the “magnetic moment density” (Jackson, 1999). For the model in Fig. 2, there is only one magnetic 
moment for each component direction, where the magnetic moment is given by the encircling current multiplied by the area encircled. 
For example, for the ̂e3 direction, the magnetic moment is the bound current shown by green arrows in Fig. 2b multiplied by Δx1Δx2. 
To obtain the magnetic moment density, this is divided by the volume of the element, giving M3 as the encircling current divided by 
Δx3 (i.e. encircling bound current per unit length). In Einstein tensor form the derived body force can be expressed as: 

fj = Mi
∂Bi

∂xj
. (14) 

Alternatively, it can be expressed in regular tensor notation as: 

f b = (∇B) ⋅ M. (15) 

While Eq. (14) is very clear in its interpretation, Eq. (15) could be ambiguous. The convention we use for (∇B) follows the dyadic 
product and can be found in Kuo and Acharya (2012), Papanastasiou et al. (2021) and Brand (2020). Kuo and Acharya (2012) give 
expressions for this tensor in other coordinate systems. In Cartesian coordinates, it is given by: 

∇B ≡

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂B1

∂x1

∂B2

∂x1

∂B3

∂x1

∂B1

∂x2

∂B2

∂x2

∂B3

∂x2

∂B1

∂x3

∂B2

∂x3

∂B3

∂x3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

It might be desirable to express Eq. (15), in a different form using the vector calculus identity: 
(∇B) ⋅ M = (M × ∇)× B+ M(∇ ⋅ B).
Noting Eq. (2), the recommended body force term can be re-expressed as: 

f b = (M × ∇) × B. (16) 

A further vector calculus identity gives another equivalent expression: 

f b = (∇B) ⋅ M = (M ⋅ ∇)B + M × (∇ × B). (17)  

3. Alternative derivation from integral forms of Lorentz force 

In several studies related to the body force, the analysis is divided into two components — a body force on the inside of the material 
and a surface force on the outside. This raises a question as to whether our derived body force (Eq. (15)) could also be found from the 
integral forms of the Lorentz force. Here we show that the same result is obtained. 

The total Lorentz force for a volume V with external surface A is given by: 

V. Kumar et al.                                                                                                                                                                                                         
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F =

∫

V

Jb × B dV +

∫

A

Kb × B dA. (18)  

where Jb is the bound current density (A/m2) inside the material and Kb is the bound current per unit length (A/m) on the surface of the 
material. The 2nd term on the right-hand side of Eq. (18) is necessary if the surface current is not captured by Jb. Note that we have 
already found an expression for Jb in Eq. (13). Fig. 3 shows why Eq. (13) does not capture the surface bound current. The curl in Eq. 
(13) is the result of taking the limit of an infinitesimally small path of integration for 

∮

C
M ⋅ dl. In the case of an internal path, the current 

enclosed by the red integration path in Fig. 3 includes the currents of two neighboring dipoles which tend to almost cancel each other. 
This cancelling effect does not happen on the surface and thus the bound surface current per unit length must be summed up only on 
the boundary; namely, an outward normal director to the surface n̂ can be used to collect the boundary current: 

Kb = M × n̂. (19) 

A general expression derived from Eq. (13) that could account for any step change in magnetization is: 

Kb = n̂ × (Moutside − Minside). (20)  

where Moutside is the magnetization of the neighboring material outside the boundary and Minside is magnetization of the material 
inside the boundary. If Moutside is zero, Eq. (20) reduces to Eq. (19). 

In most discussions in the literature, the 2nd term on the right of Eq. (18) is applied to the external surface of the magnetic material 
where the interface is with a non-magnetic material (such as air at the boundary of the magnetic fluid). However, Fig. 4 shows that 
both integrals are also necessary to find the body force on an internal volume surrounded by the same type of magnetic material (i.e. 
ferrofluid) if dipole current loops are treated as being indivisible (i.e. the internal volume only contains complete bound current loops). 
In the case of ferrofluid, the Lorentz force is applied to moving electrons in the magnetic particles which pass the force to the solid and 
then to the fluid. Therefore, when considering the body force exerted on the fluid, the boundary of the internal volume should only 
contain complete nanoparticles and therefore complete dipole current loops (as illustrated in Fig. 4). Hence, for a differential volume 
completely surrounded by ferrofluid, there is an internal interface where the carrier fluid with a magnetization of zero is adjacent to 
the solid magnetic material and Eq. (19) applies. 

Substituting Eq. (13) and Eq. (19) into Eq. (18) gives: 

F =

∫

V
(∇ × M) × B dV +

∫

A

(M × n̂) × B dA. (21) 

By applying the Gauss-Ostrogradsky theorem (Eremeyev et al. (2018)), the surface and volume integrals can be related together for 
the second term on the right-hand side of Eq. (21) (see Appendix): 

∫

A

(M × n̂) × B dA =

∫

V

[(∇M) ⋅ B + (∇B) ⋅ M − (∇ ⋅ B)M − B ⋅ (∇M)]dV. (22) 

The first term on the right-hand side of Eq. (21) can be rearranged (see Appendix) to give: 
∫

V

(∇ × M) × B dV =

∫

V

− (∇M) ⋅ B + B ⋅ (∇M) dV. (23) 

Substituting Eq. (22) and Eq. (23) into Eq. (21) gives 

F =

∫

V

[ − (∇ ⋅ B)M +(∇B) ⋅ M] dV.

Making use of Maxwell’s 2nd Law (Eq. (2)) gives 

Bound current loops
M

Internal path of integration gives = ×

Surface path of integration includes no balancing current 
from neighboring material 

Fig. 3. Distinction between surface and internal bound currents  
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F =

∫

V
(∇B) ⋅ M dV. (24) 

Thus, per unit volume, the body force is that given previously in Eq. (15). Moreover, this analysis shows that if this body force form 
(Eq. (15)) is used, it is unnecessary to add another magnetic force to the outside surface (even for free-surface studies) since the surface 
force is already included in the body force. 

4. Relation to force on a single magnetic dipole moment 

From classical electrodynamics (Jackson 1999), the force on a single magnetic dipole moment m is given by: 

Fdp = ∇(m ⋅ B). (25) 

Since magnetization M can be defined as the magnetic moment density we have: 

M =
1

ΔV

∑
m, (26)  

where ΔV is the volume of a differential element and the summation includes to all magnetic dipoles within the element. The magnetic 
body force term is the summation of the force on all dipoles within the element divided by the volume. From Eq. (25) this can be given 
by: 

f b =
1

ΔV

∑
∇(m ⋅ B). (27) 

Is it valid to swap the order of summation and differentiation and substitute Eq. (26) into Eq. (27) to arrive at ∇(M ⋅ B)for the 
magnetic body force? There is a problem in that M and m have a distinctly different property that becomes apparent when the dif-
ferential operator ∇ is applied – that is, the magnetic moment of a single dipole m is a constant with respect to space, while the 
magnetization M is spatially variant. So if Eq. (27) is expanded out into components, all derivatives of the components of m will vanish. 
On the other hand, if the order of summation and differentiation is swapped and Eq. (26) is substituted into Eq. (27), the spatial 
derivatives of M will remain, giving a different body force. 

This problem can be avoided by applying the following tensor identity to Eq. (25): 

Fdp = ∇(m ⋅ B) = (∇B) ⋅ m + (∇m) ⋅ B (28) 

Since the single dipole moment m is spatially invariant, ∇m is zero and the force on the single dipole is given by: 

Fdp = (∇B) ⋅ m (29) 

Again applying the summation of all forces on individual magnetic dipoles within the differential volume and dividing by ΔV: 

f b =
1

ΔV

∑
((∇B) ⋅ m) = (∇B) ⋅

(
1

ΔV

∑
m
)

(30) 

For Eq. (30), we can substitute the magnetization from Eq. (26) without the concern that individual dipoles are constants while the 
magnetic dipole density M is spatially variant, since no spatial derivatives are applied to the summation. This reasoning gives (in 
agreement with Eq. (15): 

f b = (∇B) ⋅ M  

Fig. 4. Illustration of the Lorentz force integrals on an internal volume representing Amperian bound current loops with arrows in the direction of 
the current flow 
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5. Practical comparisons of formulations 

While the above derivations are strongly in favor of (∇B) ⋅ M as the appropriate formulation for the body force term, it is yet unclear 
how different the most commonly used forms shown in Table 1 are from each other. To illustrate this, we consider two examples. The 
first is shown in Fig. 5 and has an exact analytical solution. The second makes use of computational fluid dynamics simulation to find 
the effect of the different body force formulations on thermomagnetic convection. 

5.1. Analytical test case 

Fig. 5 represents an infinitely long circular conductor immersed in a magnetic fluid. The dimensions and values have been selected 
to approximately correspond to our previous experimental work (Kumar et al., 2021). To simplify the problem, it is assumed that there 
is no thermomagnetic convection, and the domain is axisymmetric. The magnetic susceptibility varies linearly in the radial direction. 
rw is the radius of the wire and R is the radius of the domain to be plotted. 

Applying Ampere’s law to the configuration gives the following solution for the magnetic flux density: 

Bθ =
μ0(1 + χ)I

2πr
, (31)  

where Bθ is the azimuthal component of the magnetic flux density. Axial and radial components of B for this axisymmetric case (where 
χ varies only in the radial direction) are zero. 

Table 2 provides a summary of six different formulations from the literature including equivalent tensor notations and the full 
expression of the vector components in Cartesian coordinates. The final column on the right gives the form of the term relevant to the 
1D axisymmetric example case in Fig. 5. The detailed forms were derived by expressing the magnetic flux density (Eq. (31)), the 
magnetic field strength and magnetization and their derivatives in Cartesian coordinates. For example: 

B1 =
− μ0(1 + χ)Ix2

2π(x2
1 + x2

2)
,

B2 =
μ0(1 + χ)Ix1

2π(x2
1 + x2

2)
,

∂B1

∂x1
=

μ0Ix2

2π(x2
1 + x2

2)

(

−
∂χ
∂x1

+
2x1(1 + χ)
(x2

1 + x2
2)

)

,

∂B1
∂x2

=
μ0I

2π(x2
1+x2

2)

(

− 1 − χ − x2
∂χ

∂x2
+

2x2
2(1+χ)

(x2
1+x2

2)

)

. 

Expressions like these can easily be differentiated to assemble all the terms in the various formula for the magnetic body force in 
Table 2 for calculating the body force. 

It may be observed from right-most column of Table 2 that in the limits of small susceptibility (compared with unity) and small 
spatial gradients in susceptibility that all formulations approach the same result (− χμ0I2/(4π2r3)) except ∇(M ⋅ B) (case (c)) which 
approaches ( − χμ0I2/(2π2r3)). Thus, for this limit case (c) is double in magnitude. For the example of an infinite wire in ferrofluid, 
cases (d), (e) and (f) all give the same result which differs in magnitude from cases (a) and (b) by the factor (1+χ) if spatial gradients in 
susceptibility are small. 

The vector identity: 

(∇B) ⋅ M = (M ⋅ ∇)B + M × (∇×B),

shows that cases (a) and (b) differ from each other by M × (∇× B). Sometimes in the literature it is noted that (∇ ×B) is approximately 
zero based on Ampere’s law if bound currents are small (see Eq. (12)). In a similar way it can be shown that cases (d) and (f) are 
identical if use is made of Eq. (10) (∇× H = 0). It may be noticed in Table 2 that cases (b) and (c) include terms involving ∂χ /∂r while 
case (a) does not. This is because, for this particular problem, (M ⋅ ∇)B simplifies to fr = − MθBθ/r. 

Fig. 5. Test case with radially varying susceptibility  
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In Fig. 6, the Cartesian coordinate formulation in Table 2 has been applied to the case shown in Fig. 5. To make the example 
axisymmetric, we assumed that the susceptibility does not vary in the azimuthal direction. For simplicity, it is assumed to vary linearly 
in the radial direction with a 10% variation across the domain under investigation as: 

χ = χ0

(

1 + 0.1
̅̅̅̅̅̅̅̅̅̅
x2

1+x2
2

√
− rw

R− rw

)

. 

Gradients in susceptibility are thus 

∂χ
∂x1

= χ0
0.1x1

(R − rw)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2

1 + x2
2

√ ,

∂χ
∂x2

= χ0
0.1x2

(R− rw)
̅̅̅̅̅̅̅̅̅̅
x2

1+x2
2

√ . 

Rather than use the formulation in the second last column of Table 2, the full expressions in Cartesian coordinates as given in 
Table 2, column 3, were coded up and plotted in Fig. 6. The results are all axisymmetric with the forces pointing towards the center, 
giving confidence that the derivation and coding has been done correctly. Thus, the analytical results in the second last column were 
confirmed to give the same numerical results as column 3 for this problem. 

Comparing Fig. 6 (a) and (b) shows that for this somewhat realistic analytical case, the term M × (∇ × B) and the gradients in 
susceptibility (see Table 2 final column) do not contribute greatly to the calculated body force with only 2% greater maximum body 
force (fb,max ) for case (a) compared with case (b). The maximum body force in case (c) is nearly double that of case (b). 

As expected from the second last column of Table 2, cases (d), (e) and (f) all give the same result, but it is less than half (41%) of the 
maximum body force calculated for case (b), our recommended formulation. 

Table 2 
Various formulations for the magnetic body force density in ferrofluid.  

S. 
No. 

Tensor 
notations 

Cartesian coordinates Ref. Magnitude of force density for test 
case 

fb,max 
( N
m3

)

(a) (M ⋅ ∇)B ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

M1
∂B1

∂x1
+ M2

∂B1

∂x2
+ M3

∂B1

∂x3

M1
∂B2

∂x1
+ M2

∂B2

∂x2
+ M3

∂B2

∂x3

M1
∂B3

∂x1
+ M2

∂B3

∂x2
+ M3

∂B3

∂x3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Mukhopadhyay et al. (2005), 

Ganguly et al. (2004)  

− χ(1 + χ)μ0I2

4π2r3 

7.64×106 

(b) (∇B) ⋅ M 

Mi

(∂Bi

∂xj

)
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

M1
∂B1

∂x1
+ M2

∂B2

∂x1
+ M3

∂B3

∂x1

M1
∂B1

∂x2
+ M2

∂B2

∂x2
+ M3

∂B3

∂x2

M1
∂B1

∂x3
+ M2

∂B2

∂x3
+ M3

∂B3

∂x3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Odenbach and Liu (2001), 

Liu (2000)  

− χ(1 + χ)μ0I2

4π2r3

(

1 −
r

1 + χ
∂χ
∂r

)
7.49×106 

(c) ∇(M ⋅ B)
∂(MiBi)

∂xj 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂M1B1

∂x1
+

∂M2B2

∂x1
+

∂M3B3

∂x1

∂M1B1

∂x2
+

∂M2B2

∂x2
+

∂M3B3

∂x2

∂M1B1

∂x3
+

∂M2B2

∂x3
+

∂M3B3

∂x3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Nguyen (2012), Vatani et al. 
(2019)  

− χ(1 + χ)μ0I2

4π2r3

(

2 −
r(1 + 2χ)
χ(1 + χ)

∂χ
∂r

)
14.9×106 

(d) μ0(∇H) ⋅ M 

μ0Mi

(∂Hi

∂xj

)

μ0

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

M1
∂H1

∂x1
+ M2

∂H2

∂x1
+ M3

∂H3

∂x1

M1
∂H1

∂x2
+ M2

∂H2

∂x2
+ M3

∂H3

∂x2

M1
∂H1

∂x3
+ M2

∂H2

∂x3
+ M3

∂H3

∂x3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

-  
− χμ0I2

4π2r3 

3.06×106 

(e) μ0M∇H 

μ0M
(∂H

∂xj

)

μ0M

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂x1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

H2
1 + H2

2 + H2
3

√

∂
∂x2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

H2
1 + H2

2 + H2
3

√

∂
∂x3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

H2
1 + H2

2 + H2
3

√

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Dixit and Pattamatta (2020), 

Rosensweig (1987), 

Rahman and Suslov (2015)   

− χμ0I2

4π2r3 

3.06×106 

(f) μ0(M ⋅ ∇)H 

μ0Mi

(∂Hj

∂xi

)

μ0

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

M1
∂H1

∂x1
+ M2

∂H1

∂x2
+ M3

∂H1

∂x3

M1
∂H2

∂x1
+ M2

∂H2

∂x2
+ M3

∂H2

∂x3

M1
∂H3

∂x1
+ M2

∂H3

∂x2
+ M3

∂H3

∂x3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ashouri and Shafii, (2017), 

Saedi et al. (2019)  

− χμ0I2

4π2r3  

3.06×106  
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Fig. 6. Comparison of formulations for magnetic body force applied to ferrofluid surrounding a conducting wire. The cases (a) to (f) correspond to 
(a) to (f) in Table 2. 
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5.2. Effect on thermomagnetic convection 

It can be anticipated from Fig. 6 that variation in body force will also affect thermomagnetic convection, which is a phenomenon 
driven by temperature gradients in magnetic fluids in the presence of a magnetic field. Temperature affects the body force because 
magnetization is a function of temperature due to Brownian motion randomly misaligning the magnetic particles. A number of 
temperature – magnetization relations have been proposed and are used in the literature. For example, in the Langevin approach (e.g. 
used by Kumar et al., 2021), the magnitude of the magnetization is a function of both temperature and magnetic field strength: 

M(T,H) = M∞(coth(α(T,H)) − 1 / α(T,H)), (32)  

where M and H are magnitudes of magnetization and magnetic field strength, M∞ is the saturation magnetization of the fluid and: 
α(T,H) =

μ0Ms(T)VpH
kBT . where Ms is the magnetization of the solid material, Vp is the volume of the particle, and kB is the Boltzmann 

constant. In terms of the current formulation, the temperature dependence of magnetization enters the model via susceptibility, χ. 
Making use of the relationship M = χH, the susceptibility can be expressed as a function of temperature and magnitude of magnetic 
field strength: 

χ(T,H) = M∞(coth(α(T,H)) − 1 /α(T,H))

/

H ≈
μ0M∞Ms(T)Vp

3kBT  

where the approximation corresponds to the limit of small α (e.g. due to small H), so that the Langevin factor, (coth(α) − 1 /α) ≈ α /3. 
This limit is referred to as the ‘initial susceptibility’ which is a function of temperature but not H. 

To quantify the effect of the body-force formulation on thermomagnetic convection, different forms of body force terms derived in 
the last column of Table 2 (cases (a), (b), (c), and (d)), are applied in radial direction of ferrofluid, via compiling a user-defined function 
(UDF) in the computational fluid dynamics package, Ansys FLUENT 2021R2. A 2D axis-symmetric model is developed to measure the 
transient temperature of copper micro-wire and results are compared with experimental findings of Kumar et al. (2021). 

The experimental results are from our previous published work where a 2A direct current was applied for 5s to a copper micro-wire 
of diameter 50 μm in a ferrofluid (ϕ = 2% and dp = 10 nm). The current generates a self-induced magnetic field and Joule heating 
around the micro-wire. The value of initial susceptibility (χ0) of tested ferrofluid is 1.88. Details on model development and governing 
equations are obtainable from Kumar et al. (2021). The model here is as described previously in Kumar et al. (2021) except that 
different body force formulations are being applied. Note that the magnetic force is only applied in the radial direction in the 
simulation and for simplicity, the simulation assumes the magnetic strength H is independent of the material properties and is that of 

Fig. 7. Transient temperature of wire under difference body force terms  

V. Kumar et al.                                                                                                                                                                                                         



International Journal of Engineering Science 192 (2023) 103929

13

an infinitely long conductor. Gravitational buoyancy forces are applied axially. 
Fig. 7 compares the experimental and simulation results for the heated wire temperature under the effect of thermomagnetic 

convection in the tested ferrofluid. These results suggest that all the body force models identify the phenomenon, but the results are 
significantly different. The wire temperature for proposed body force term f b = (∇B) ⋅ M and term f b = (M ⋅ ∇)B is close to correctly 
predicting the wire temperature and thermomagnetic cooling effect. In contrast, the term ∇(M ⋅ B) overpredicts the cooling effect and 
inception of thermomagnetic convection effects are earlier. In case of μ0(∇H) ⋅ M, the thermomagnetic convection effect is much less 
significant, resulting in less cooling and an overall higher temperature of wire. Overall, among the cases in Fig. 7 there is a variation of 
about 14 K, which is very significant, noting that the maximum temperature rise from the initial ambient temperature is about 28 K. 

The oscillations in the simulation results shown in Fig. 7 are due to transient thermomagnetic convection effects near the wire. The 
calculated instantaneous temperature distributions shown in Fig. 8 show this effect for four different body-force configurations. We 
can see in Fig. 8(c), due to the larger magnitude of f b = ∇(M ⋅ B) compared to the other cases, greater convection of heat from the wire 
into the fluid occurs with multiple rapid and irregular thermal eddies developing near wire surface. In Fig. 8(a) and (b) the number of 
eddies is reduced compared with Fig. 8(c). This oscillating phenomenon is not so evident in the experimental results – possibly because 
of the three-dimensionality of the actual flow in contrast with the axisymmetric model. In the case of f b = μ0(M ⋅ ∇)H, natural con-
vection dominates over thermomagnetic convection, which suppresses the cooling effect. Thus, Figs. 7 and 8 demonstrate that the form 
of the body force term has a very important influence on predicting thermomagnetic convection effects. 

The differences between the experimental results and the predictions for the case of f b = (∇B) ⋅ M in Fig. 7 may be attributed to 
model simplifications and an incomplete understanding of the importance of various secondary effects on thermomagnetic convection 
around a heated microwire. The model does not include magneto-viscous effects, magneto-phoresis effects or thermophoresis effects. 
The choice of the relation for modelling the temperature dependence of magnetic susceptibility is another consideration. Noting that 
other studies on thermomagnetic convection around larger conductors have reported convection cells in the r-θ plane (Krakov & 
Nikiforov, 2020), the axisymmetric assumption used in this simulation also may not be correct. Moreover, the infinite wire assumption 
for the magnetic field and the neglect of axial magnetic body forces in the simulation, removes finite-wire end effects on the magnetic 
field. These considerations should be explored in future studies. 

6. Merits and originality of the present derivations 

The main contributions of this study are the new derivations of the magnetic body force term from the Lorentz force and the 
magnetostatic forms of Maxwell’s equations. Noting that Liu (2000) also proposed the same mathematical form for the body force (i.e. 
Eq. (14)), it is worthwhile highlighting the originality of our approach. Liu started with an expression representing the Helmholtz force 
(which itself appears to have been derived from a form of the Maxwell stress tensor according to Luo et al (2000)), and showed that the 
expression μ0Mi∇Hi can be derived if the susceptibility is a linear function of the density of magnetic particles (i.e. magnetic particle 
concentration, ρ). This assumption is expected to be correct in the limit of small χ (i.e. dilute ferrofluid), since higher order terms (ρ2, 
ρ3, …) in a general polynomial relation between χ and ρ will vanish if ρ is small. Liu further reasoned that if χ/(1+χ) was taken as being 
proportional to ρ, it would be equally valid to arrive at Mi∇Bi as the Kelvin body force from the Helmholtz force expression. This second 
assumption is more in line with our work since rather than χ, the components of magnetization (encircling bound current per unit 
length in each direction) should be proportional to ρ and from Eqs (4) and (7) M = (χ/(1+χ)μ0)B, indicating the importance of the ratio 
χ/(1+χ). Thus, the derivations in this study complement Liu’s work since we have started from the Maxwell equations and macroscopic 
definitions of all parameters to derive the magnetic force rather than making use of the abovementioned Helmholtz force expression. 

A further feature of our study is the inclusion of definitions for all macroscopic magnetic parameters. This is not often done, but we 
believe it is useful because the literature contains subtly different definitions for the same parameters (e.g. Eq. (4) in this study is taken 
from Jackson (1999) as the macroscopic definition of H while Rosensweig (1987) uses the same equation as the definition of M). 
Moreover, we are not aware of another study that interprets the components of the magnetization vector as encircling bound current 
per unit length in each direction. This understanding is useful because it is consistent with M being the magnetic moment density and 
makes it easy to write down the bound current term in Ampere’s law (Eq. (8)). 

7. Conclusions 

To help clarify the significance of the different formulations for the magnetic body force term, we have presented a new derivation 
of the term and compared it with other formulations from the literature commonly used in last five years. Our derived term (∇B) ⋅ M is 
the same as that recommended by Odenbach and Liu (2001) and Liu (2000) based on their theoretical and experimental work (their 
notation was Mi∇Bi). It differs by only a small amount from (M ⋅ ∇)B based on a numerical example of a single conductor in ferrofluid. 
Equivalent formulations of the term are given by (M × ∇) × B and (M ⋅ ∇)B+ M × (∇× B). Most of the formulations considered except 
∇(M ⋅ B) approach the same result in the limit of small susceptibility (χ << 1) which does not generally hold for ferrofluid. The 
proposed derivation requires that the differential volume experiencing the body force only contains complete dipole current loops. As a 
result, when using the term to model situations where the ferrofluid has interfaces with other materials (such as glass or air), an 
additional surface integral term to account for bound surface current is not needed since bound surface currents are already included in 
(∇B) ⋅ M. Some open questions still remain that could be resolved by rigorous experiments to better validate the proposed form of the 
term experimentally. The findings of this work are valuable for thermomagnetic convection and magnetophoresis studies and are not 
limited to ferrofluid but also apply to any other soft magnetic material for any value of χ. 
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Appendix –. Proof of Eq. (22) and Eq. (23) 

An important step in the derivation from the integral forms of the Lorentz force is the proof of the following relationship: 
∫

A

(M × n̂) × B dA =

∫

V

[(∇M) ⋅ B + (∇B) ⋅ M − (∇ ⋅ B)M − B ⋅ (∇M)]dV. (A1) 

Through a cross product vector identity, the LHS of Eq. (A1) can be rewritten as: 
∫

A

(M × n̂) × B dA =

∫

A

[ − n̂ ⋅ (B ⊗ M) + (M ⋅ B)n̂]dA. (A2) 

Considering the first term in the integral on the RHS of Eq. (A2), this can be expanded as: 

−

∫

A

n̂ ⋅ (B ⊗ M)dA = −

∫

A

niBiMjejdA. (A3) 

Applying the Gauss-Ostrogradsky theorem (Eremeyev et al. (2018)): 

−

∫

A

niBiMjejdA = −

∫

V

[
∂Bi

∂xi
Mj +

∂Mj

∂xi
Bi

]

ejdV =

∫

V

[ − (∇ ⋅ B)M − B ⋅ (∇M)]dV. (A4) 

Similarly, considering the second term in the integral on the RHS of Eq. (A2): 

Fig. 8. Thermal field development at t =5s. The heated 50 μm diam., 43 mm long, vertical wire is on the right side of each of the images which show 
the full calculation domain (5 mm radius). (a) (M ⋅ ∇)B, (b) (∇B) ⋅ M, (c) ∇(M ⋅ B), (d) μ0(M ⋅ ∇)H. 
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∫

A

(M ⋅ B)n̂ dA =

∫

A

MiBinjejdA  

=

∫

V

[
∂Mi

∂xj
Bi +

∂Bi

∂xj
Mi

]

ejdV  

=

∫

V

[(∇M) ⋅ B + (∇B) ⋅ M]dV. (A5) 

Substituting Eqs. (A4) and (A5) into Eq. (A2) gives Eq. (A1). 
A further important relation in the derivation is needed to support Eq. (23): 

(∇ × M) × B = − (∇M) ⋅ B + B ⋅ (∇M). (A6) 

The proof can be made by rewriting LHS of Eq. (A6) in indicial form: 

(∇×M) × B =

[

ei ×
∂Mj

∂xi
ej

]

× Bkek =

[
∂Mj

∂xi
ei × ej

]

× Bkek  

=
∂Mj

∂xi
εijlel × Bkek =

∂Mj

∂xi
Bkεijlεlkmem  

=
∂Mj

∂xi
Bkem

(
− δjkδim + δjmδik

)
= −

∂Mj

∂xi
Bjei +

∂Mj

∂xi
Biej  

= − ei
∂Mj

∂xi
Bj + Bi

∂Mj

∂xi
ej = − (∇M) ⋅ B + B ⋅ (∇M)
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