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Abstract: Core–shell particles are micro- or nanoparticles with solid, liquid, or gas cores encapsulated
by protective solid shells. The unique composition of core and shell materials imparts smart properties
on the particles. Core–shell particles are gaining increasing attention as tuneable and versatile
carriers for pharmaceutical and biomedical applications including targeted drug delivery, controlled
drug release, and biosensing. This review provides an overview of fabrication methods for core–
shell particles followed by a brief discussion of their application and a detailed analysis of their
manipulation including assembly, sorting, and triggered release. We compile current methodologies
employed for manipulation of core–shell particles and demonstrate how existing methods of assembly
and sorting micro/nanospheres can be adopted or modified for core–shell particles. Various triggered
release approaches for diagnostics and drug delivery are also discussed in detail.

Keywords: digital microfluidics; triggered release; sorting; assembly; targeted drug delivery

1. Introduction

Microparticles have diameters ranging from a few micrometres to a few hundred
micrometres. Compared to the bulk material, microparticles have improved surface prop-
erties due to their high surface-to-volume ratio [1]. For example, higher reactivity and ease
of adding functional components enable microparticles to serve as smart materials with
tuneable properties. For particle sizes in the nanometre scale, surface properties become
dominant compared to its core. Size-dependent optical, mechanical, electronic, and chemi-
cal properties enable nanoparticles to be used in various applications. Micro/nanoparticles
have been well-researched in the past few decades and continue to be a hot topic in the
fields of catalysis [2], energy [3], environment [4], pharmaceuticals [5] and biomedicine [6].
More specific applications include tissue engineering, drug delivery [7], imaging [8], and
biosensors [9].

Micro/nanoparticles are categorised as homogenous micro/nanospheres or heteroge-
neous core–shell particles based on their material compositions. Micro/nanospheres are
solid throughout, whereas core–shell particles have solid shells enwrapping cores which
can be either solid, liquid, or gas [10]. The shells consist of organic polymers or inorganic
materials such as metal, metal oxides, and silica or some combination of organic–inorganic
materials [11,12]. On the other hand, a single material with heterogeneous structures can
contain both core and shell components. The choice of shell material depends strongly
on the application. These unique compositions offer features and properties that are not
achievable by individual components [13–15]. Recently, the study of core–shell particles
has been gaining attention due to emerging applications such as targeted drug delivery,
biomedical science, tumour therapy, food and cosmetic industry, medicine, and material
science [5,16–21]. Existing reviews focus on various strategies of fabricating core–shell
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particles [22], the compilation of materials that make up the shell and core components [9],
and their applications [23]. A few studies also combined the topics and addressed two or
more such approaches to provide more insight to readers [9,13,23]. However, a missing
link remains between core–shell particle fabrication and its application. The present re-
view attempts to bridge the gap by providing a sequential discussion, starting from the
fabrication to the manipulation of core–shell particles. Additionally, a brief discussion on
applications complements the review of the state-of-the-art.

Core–shell particles are fabricated by the emulsification method, where particles are
produced in bulk by phase-separated emulsification or one by one in microchannels [24].
Other methods such as polymerization [25], gas shearing strategies [26], self-assembly [27],
sol–gel [28], and electrospray [29] are also utilised. Knowledge of manipulating core–shell
particles facilitates current applications and enables their future use. For instance, core–
shell particles for drug delivery are required to effectively transport drugs to targeted
sites and subsequently release them in a controlled manner [10]. To achieve this, particles
need to be sorted to ensure uniform morphological properties. The release of the cargo
needs to be triggered by a suitable mechanism. Thus, there is a need for an in-depth study
of manipulation techniques for the effective integration of fabrication and application of
core–shell particles.

Figure 1 illustrates the key sections of this review including fabrication, manipulation,
and application. Manipulation strategies are further divided into assembly, sorting, and
triggered release. Assembly is a process through which building blocks arrange into an
orderly manner to form a structure. The arrangement is realised either by utilising local
interactions of building blocks or with the aid of external fields [30]. Although most of
the reported methods on particle assembly are performed on micro/nanospheres [31], the
assembly methodologies can be adopted for core–shell particles as the underlying principles
relate only to their surface properties. Core–shell particles are like solid micro/nanospheres
where only surface properties matter.
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Figure 1. Classification of fabrication strategies, manipulation techniques, and applications of core–
shell particles.

Sorting core–shell particles is crucial for real-world applications [32]. Particles vary
in size, shape, density, and porosity due to non-ideal fabrication processes. Additionally,
particles may aggregate or accumulate impurities during fabrication or storage. Existing
sorting methods for micro/nanospheres need to be modified to sort core–shell particles.
Size and density sorting methods can separate core–shell particles from micro/nanospheres
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when used sequentially [33]. On the other hand, techniques based on dielectric or optical
properties can sort core–shell particles in a single stage [34].

Core–shell particles serve as storage and carrier platforms for many applications. This
role requires the release of core materials, when triggered by external stimuli. Triggering is
complete when the shell ruptures and releases the core contents. For instance, the shell can
be made of biodegradable polymers for triggered release in drug delivery [35]. Typical poly-
mers for this purpose are polyesters, polyanhydrides, polyorthoesters, polyphosphazenes,
and polyurethanes [36]. Polymers can be easily tailored to respond to multiple stimuli
including temperature changes [37], electromagnetic fields [38], ultrasonic waves [39],
and chemical signals [40]. In addition, polymers offer the capacity to control surface and
mechanical properties towards controlled degradation. The core–shell particle is a good
candidate for triggered drug release due to its unique structure [16]. Figure 2A shows
how the shell supports and retains the drug-loaded core until its triggered release. In
some cases, drug release also couples with biosensing [41]. Figure 2B illustrates shell
functionalisation to detect a given concentration of a marker that subsequently triggers
drug release. Triggered release of insulin upon glucose detection is such an example [42].
The two materials enable core–shell particles to be used for catalysis [43], biosensing [5],
diagnosis [17,44], water treatment [45], artificial cells [46], and encapsulation in the food or
cosmetics industry [47]. Expensive metal catalysts such as platinum may take advantage
of the core–shell structure to reduce cost (Figure 2C). Both the shell and core can serve as
active media for catalysis. If not used as the active site, the shell serves as the protective
layer, whereas the core provides support to the shell. Core–shell particles have been used
for the detection of methylene blue dye (Figure 2D). Figure 2E demonstrates that core–
shell particles are also employed for diagnostic purposes. Gaseous core–shell particles
known as microbubbles and iron oxide core–shell particles are useful for enhancing con-
trast in ultrasound imaging and magnetic resonance imaging (MRI), respectively [17,44].
Hydrogel-based core–shell particles with multiple cores can serve as artificial cells [48].
Three-dimensionally cross-linked polymeric networks of hydrogel can hold up to 95% wa-
ter and facilitate organelle-like partitioning, resembling natural biological processes. Such
spatial confinement is highly desired for biochemical reactions [49]. Core–shell particles
can overcome the limitations of conventional materials used in 3D printing. For instance, a
core–shell morphology imparts enhanced mechanical and electronic properties to printed
structures [50]. These are used for printed circuit boards, solar cells, transparent conductive
electrodes, and touch screens [50,51]. Core–shell particles also serve as microactuators
such as pump and micromixers. For instance, the liquid crystalline elastomer shell can
pump core liquids across the particle shell [52]. On the other hand, magnetic core–shell
particles are widely used as micromixers. The motion of the magnetic core in a rotating
magnetic field enhances the sensitivity of biosensors embedded in the shell [53]. Polymer
shells encapsulating metal cores are well-suited for high-energy storage applications [54].
Such conductor–insulator particles possess high electric permittivity and low dielectric
loss, making them ideal for electromagnetic armour [55], piezoelectric sensors [56], and
embedded capacitors [57]. Lastly, core–shell particles are used as encapsulating agents to
protect the core material such as oils, vitamins, and flavours against heat, moisture, and
pH changes until release [47].



Micromachines 2023, 14, 497 4 of 28Micromachines 2023, 14, x FOR PEER REVIEW 4 of 29 
 

 

 
Figure 2. Typical applications of core–shell particles. (A) Chitosan core–shell particle for drug re-
lease; (B) Core–shell particles for biomolecule sensing and release; (C) Carbon-platinum-PANI (pol-
yaniline) core–shell particles as catalysis; (D) Core–shell particle for methylene blue detection; (E) 
Schematics showing enhanced ultrasound imaging of blood capillaries after microbubble infusion. 

2. Fabrication Methods of Core–Shell Particles 
Fabrication methods and formulation parameters determine the physical and chem-

ical characteristics of particles. Often, these properties are tuned to serve a specific appli-
cation. Bulk emulsion coupled with solvent evaporation is a standard method for large-
scale fabrication of micro/nanospheres. This method is usually combined with phase sep-
aration to obtain core–shell micro/nanoparticles [58]. However, the presence of high shear 
rate produces particles with a broad size distribution. Microfluidic methods are a reliable 
alternative for emulsification. In contrast to the bulk production with emulsion solvent 
evaporation, the micro/nanospheres are generated drop-by-drop with high monodisper-
sity [5,27]. The other methods are gas-shearing, the sol–gel method, electrospray, and self-
assembly. These methods create particles with varying degrees of monodispersity. Gas 
shearing creates core–shell microparticles with good monodispersity [26], whereas the 
sol–gel process yields particles with a broader size distribution [28]. Electrospraying gen-
erates monodispersed nanometre-scale core–shell particles [59]. Table 1 compares these 
fabrication methods in terms of particle size, dispersity and encapsulation efficiency.  
Although a broad range of particles can be considered as core–shell micro/nanoparticles, 
the fabrication process may not clearly distinguish between core–shell particles and mi-
cro/nanospheres, due to the partial coverage of the core. 
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showing enhanced ultrasound imaging of blood capillaries after microbubble infusion.

2. Fabrication Methods of Core–Shell Particles

Fabrication methods and formulation parameters determine the physical and chemical
characteristics of particles. Often, these properties are tuned to serve a specific application.
Bulk emulsion coupled with solvent evaporation is a standard method for large-scale
fabrication of micro/nanospheres. This method is usually combined with phase separation
to obtain core–shell micro/nanoparticles [58]. However, the presence of high shear rate pro-
duces particles with a broad size distribution. Microfluidic methods are a reliable alternative
for emulsification. In contrast to the bulk production with emulsion solvent evaporation,
the micro/nanospheres are generated drop-by-drop with high monodispersity [5,27]. The
other methods are gas-shearing, the sol–gel method, electrospray, and self-assembly. These
methods create particles with varying degrees of monodispersity. Gas shearing creates
core–shell microparticles with good monodispersity [26], whereas the sol–gel process yields
particles with a broader size distribution [28]. Electrospraying generates monodispersed
nanometre-scale core–shell particles [59]. Table 1 compares these fabrication methods in
terms of particle size, dispersity and encapsulation efficiency. Although a broad range of
particles can be considered as core–shell micro/nanoparticles, the fabrication process may
not clearly distinguish between core–shell particles and micro/nanospheres, due to the
partial coverage of the core.
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Table 1. Comparison of various fabrication methods for core–shell particles.

Fabrication Method Materials: Shell/Core Particle Size (µm) Dispersity Encapsulation
Efficiency

Emulsification

• poly (DL-lactide-co-glycolide)
(PLGA)/Aqueous media [60]

• Poly (DL-lactide)
(PDLLA)/Dichloromethane [58]

• Poly(L-lactide) (PLLA)/PLGA [61]
• Alginate/PLGA [62]

45–350

Monodisperse
(coefficient of

variation,
COV < 10%)

High (90–100%)

Polymerisation

• St/Methyl methacrylate (MMA) [63]
• γ-methacryloxypropyltrimethoxysilane

(MPS)/Polystyrene [25]
• St/Silica [64]

0.2–10 Polydisperse
(COV = 20–50%) High (>80%)

Gas-shearing • Chitosan/Aqueous media [65]
• Chitosan/Alginate [66]

20–250 Monodisperse
(COV < 8%) Low (30–70%)

Sol–gel
• SiO2/ZnO [67]
• TiO2/Air [68]
• SiO2/Au [69]

0.1–0.4 Polydisperse
(COV 40–60%) High (80–100%)

Electrospray
• Polycaprolactone (PCL)/Sudan red [70]
• Alginate/PLGA [71]
• Chitosan/PLGA [72]

0.2–100 Polydisperse
(COV = 5–40%) High (65–100%)

Self-assembly

• Polymethylmethacrylate (PMMA)
particle/Water [73]

• Latex particles/Oil [74]
• Polystyrene particles/Oil [73]

800–5000 Polydisperse
(COV = 40–70%) Low (<50%)

2.1. Emulsification Method
2.1.1. Bulk Emulsification

Bulk emulsification produces homogenous micro- and nanodroplets on a large scale [75].
The macroscopic droplets are mechanically broken down into uniform micro- or nan-
odroplets using ultrasonication or colloid milling [76]. The droplets are dried into solid
spheres using solvent evaporation. Bulk emulsification also creates core–shell particles
when the constituent polymers are tuned to undergo phase separation. Emulsions (i.e.,
water-in-oil-in-water, W/O/W; solid-in-oil-in-water, S/O/W; oil-in-oil-in-water, O/O/W)
containing two polymers are employed in this process. Upon solvent removal, a thermody-
namically stable configuration of phase-separated polymers is achieved. The particle size
typically ranges from 1 to 800 µm [58].

The correct selection of evaporation rate and interfacial tension ensures complete
coverage of the core material by the shell. Higher evaporation rates cause incomplete phase
separation resulting in partial core coverage [77]. Polymers such as PLGA, Glu-PLGA,
PDLLA, chitosan, and alginate are employed [78,79]. This widely used process is simple to
set-up and offers a broad range of material choices. However, the low monodispersity and
difficulty in scaling up remain the limitations of this process.

2.1.2. Microfluidic Emulsification

Microfluidics is the science and engineering of handling fluids on the microscale.
Droplet-based microfluidics has been utilised to fabricate microspheres and core–shell
particles. Compared to other techniques, microfluidic emulsification offers more control
over particle morphology [80,81]. The microfluidic technique allows for the emulsification
of a monomer solution followed by the formation of solid microparticles. Heat or UV
light exposure initiates the process of polymerisation in the presence of thermal or photo-
initiators [82,83]. The size of produced particles range from 50 to 300 µm [58].

The mechanism of emulsification in microfluidic devices is straightforward. Figure 3A
shows the breaking up of the dispersed phase into tiny droplets under a shearing con-
tinuous phase. The tangential drag generates a shear force on the forming droplet. This
formation process can be mediated by external factors such as temperature [84,85]. Droplet



Micromachines 2023, 14, 497 6 of 28

size is determined by factors such as relative flow rates of the fluids; fluid properties such
as viscosities and interfacial tensions as well as dimensions of the microchannel [24,86].
Sequential emulsification produces double emulsions such as the water-in-oil-in-water
(W1/O/W2) type, where the oil phase separates two aqueous phases, and the oil-in-
water-in-oil (O1/W/O2) type, where the aqueous phase separates the two oil phases. The
resulting double emulsions subsequently undergo curing to form core–shell particles [24].
The advantages of this approach are low material consumption, minimised wastage, high
monodispersity, and high core-coverage efficiency [87]. Nevertheless, this method is prone
to channel contamination, blockage, and low throughputs [88]. The fabrication of double
emulsions can be divided into two-step or one-step processes.
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Two-Step Emulsification

In a two-step method, the fluid in the centre undergoes emulsification to form the
droplet core (Figure 3A(i)). The droplet then disperses into a continuous phase of the
outer fluid that undergoes a second emulsification. Thus, a double emulsion forms in
two stages by sequentially operating two single emulsion droplet formation devices [89].
The two-step method utilises primary flow configurations such as co-flowing, T-junctions,
cross-flowing, flow-focussing, and cross-flowing with opposite wettability. For example,
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two flow-focussing, two co-flowing, or one T-junction and one flow-focussing structures are
connected in series to produce double emulsions [90]. Moreover, moving-wall geometries
and microfluidic devices control the size of the single and double emulsion. Core size, shell
size, and thickness are controlled by modifying the primary microfluidic structure and the
flow rates [91,92].

One-Step Emulsification

The one-step method produces double emulsions, which subsequently are cured to
form core–shell particles [93]. The microfluidic devices consist of a glass capillary inserted
into a square glass channel coaxially. The size of the double emulsion is tuned by selecting
channels of different cross-sectional areas [94]. Figure 3A(ii) illustrates both the core and the
shell fluids flowing into the capillary channel and the outer co-axial section. The continuous
phase is injected into the outer co-axial section in the opposite path. This structure creates a
co-axial flow, which breaks at the outlet orifice and produces double emulsions [95].

2.2. Polymerisation

Micro- or nanosized core–shell particles are widely produced using polymerisation.
Current polymerisation methods include emulsion, dispersion, and precipitation [25].
Emulsion polymerisation creates particles with a variety of physicochemical and colloidal
properties [96]. The reaction is characterised by emulsified monomer droplets dispersed in a
continuous aqueous phase and assisted by an oil-in-water surfactant [97]. The process offers
flexibility as particles can be produced in a continuous, batch, or semi-batch manner [98].
Unlike emulsion polymerisation, dispersion polymerisation produces core–shell particles
in two stages. First, core particles are synthesised and dispersed into the continuous phase.
Next, core particles are used as nuclei in the shell formation stage. Soluble surfactants,
initiators, and monomers used in this process become insoluble after polymerisation. Li et al.
prepared micrometre-scale Poly(N-isopropylacrylamide) (PNIPAM)-poly(4-vinylpyridine)
(P4VP) core–shell particles using the dispersion polymerisation method [99]. The major
drawbacks of the process are broader size distribution and low encapsulation efficiency.

2.3. Gas-Shearing

Core–shell particles are fabricated by moving the core liquid through a capillary and
then encapsulating the formed core in a polymer shell [26]. Figure 3B shows a simple
gas-shearing apparatus for the preparation of core–shell microparticles. Controlled pulses
of nitrogen gas or air interact with the core liquid at the capillary tip after passing through
the annular region around the capillary. The gas applies a shear force on the core liquid
stream against its surface tension to form the core. The shear force increases with the core
size, opposing the surface tension. The formed core is separated from the dispersed phase
at equilibrium. The outer layer of the liquid solidifies to form core–shell particles, which
are later collected in a reservoir [100]. The particle size can be controlled by tuning the
gas flow rate, but controlling the morphology of particles and increasing the yield are
difficult [65,66].

2.4. Sol–Gel Method

The sol–gel process is widely employed to fabricate the core–shell structure of ceramic
materials [68]. The fabrication process begins with templating colloidal particles such
as nanoscale gold, silver, or cadmium sulphide particles; or microscale silica or polymer
beads [22]. Next, a ceramic shell or its precursor materials are transferred onto the surface
of the template particle resulting in a core–shell composite. The precipitation method,
also called sol–gel condensation, completes the process. The template is subsequently
removed either by calcination at high temperature or selective wet etching [28]. The sol–
gel procedure starts with its impregnation of sub-micrometre-size silica particles with
a preceramic polymer polycarbomethylsilane (PCMS) (Figure 3C). The pyrolysis and
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subsequent etching of the silica template allow mesoporous silicon oxycarbide (SOC)
core–shell particles to form [101].

2.5. Electrospray

Electrospraying is a well-known method for fabricating polymeric core–shell parti-
cles [29]. Electrosprayed particles range from tens of nanometres to hundreds of microme-
tres. Figure 3D shows a typical setup that includes a high-voltage power source, coaxial
needles, syringe pumps, and a grounded conductor [102]. For core–shell particles, core
and shell liquids are injected into two coaxial needles using separate pumps. A voltage
bias of a few kilovolts is applied between the nozzles and the grounded surface. Elec-
trostatic forces enable coaxially flowing liquids to overcome surface tension and to break
into core–shell droplets at the nozzle tip. The droplets are subsequently collected from
the grounded surface [103]. The particle size ranges from 0.2 µm to 100 µm. Compared to
other fabrication approaches, electrospraying yields relatively monodisperse particles. A
combination of electrospraying and spray-drying methods can improve the control over
particle size and morphology. Additionally, the applied electrical potential prevents the
aggregation of fabricated particles [104,105].

2.6. Self-Assembly Method

Layer-by-layer self-assembly is a technique that encapsulates micro/nanospheres to
generate core–shell particles [106]. The basis of this method is the electrostatic association
between the alternate deposition of oppositely charged species. For example, multi-layered
shells of polyelectrolytes, inorganic nanoparticles, or proteins form core–shell structures by
sequentially accumulating on particle templates. Layer-by-layer assembly also produces
organic−inorganic core–shell particles, comprising a latex core and silica shell [27,107].
Figure 3E illustrates a three-step fabrication process. First, suspension of the core liquid
forms an emulsion in an immiscible liquid containing colloidal particles. Second, the
emulsion droplets absorb particles to reduce the total surface energy and to cover the
interface consistently. This process forms an elastic shell by locking the particles together
by heating in the absence of air or by adding polycations. Third, the formed microcap-
sules are transferred to a solvent by centrifugation. This process eliminates the interface
between the internal and external fluids for applications requiring functionalisation of
colloidal particles [108,109]. Self-assembly is a quick process. However, this approach
lacks specificity for the combination of core and shell materials for a broader range of
core–shell particles. In addition, this method has a relatively large size distribution and
low production efficiency [110].

3. Assembly
3.1. Self-Assembly

Self-assembly is a process where a collection of building blocks forms an ordered
pattern without external intervention [111]. This review focuses on nano- and microscale
particles as building blocks. Self-assembly is significantly affected by particle size. At the
micrometre scale, most self-assembly methods utilise aqueous dispersions of a charge-
stabilised spherical polymer or silica beads [112]. At the nanoscale, most methods employ
surfactant-coated particles dispersed in an organic solvent [113]. Regardless of particle
size, most self-assembly methods involve liquid to enable building blocks to arrange into a
given configuration.

Self-assembly is driven by depletion attraction, the capillary force, dipole–dipole
attraction, or their combinations in a liquid [114]. Depletion attraction arises when large
particles come sufficiently close to each other to exclude small additives from their vicinities.
Aggregation of blood cells upon the addition of electrolytes is an example of self-assembly.
The non-uniform distribution of additives around the particles causes an osmotic pressure
difference that leads to assembly. Attractive capillary interaction arises spontaneously
between particles with a similar wetting nature at a fluid interface. Floating particles
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distort the interface and create additional surface area. Energy minimisation reduces
surface distortion, causing particles to aggregate and assemble [115]. On the other hand, an
evaporating solvent draws particles together while drying out through the gaps between
partially assembled particles. Particles align and assemble due to capillary forces arising
from the evaporating solvent. The interaction of dipole moments also facilitates particle
assembly [116]. Self-assembly methods are broadly categorised into three groups, namely:
template-assisted assembly, substrate assembly, and interfacial assembly. Leekumjorn et al.
discussed the different self-assembly methods according to the corresponding driving
forces [117].

3.1.1. Template-Assisted Self-Assembly

Templates provide a direct method of particle assembly and patterning by introducing
covalent or noncovalent interactions. Figure 4A demonstrates that topographic features of
a patterned surface facilitate assembly at a similar length scale. Moreover, functionalisation
of a particle surface enables controlled and selective assembly [117]. Such features enable
highly localised capillary forces that guide the particles with precision over both long- and
short-range orders of assembly. Particle density can be controlled by the guiding features of
the template [118]. In addition to physical templates, emulsion drops serve as templating
agents by confining particles into spheres suspended in a liquid. Once the particles are
assembled and fixed, the droplets are dissolved, and the assembly is extracted as a colloidal
suspension [119]. Figure 4B shows the layer-by-layer assembly on Pickering emulsion
surfaces. This assembly uses polyelectrolytes as molecular glue to bind particles to the
substrate or to particle layers. This technique produces layered particles or micropatterns
on substrate surfaces [117].

3.1.2. Self-Assembly on a Substrate

Substrates are used for particle self-assembly to form 1D, 2D, or 3D superstructures.
In this case, surfactant-coated particles are suspended in volatile solvents such as octane,
ethanol, or chloroform. The solid substrates include carbon or silicon oxide plain surfaces,
or carbon-coated copper grids [120]. Figure 4C illustrates an assembly process initiated by
solvent evaporation. The process creates a drying front that induces particle deposition
and organisation on the substrate surface. Controlling the evaporation rate is crucial as
particles either form random aggregates or close-packed assemblies depending on the
evaporation rate [121,122]. For instance, latex microparticles form amorphous structures
within tens of minutes of drying, whereas crystalline structures take more than a week to
form. Denkev et al. reported a two-stage self-assembly on a substrate. First, the capillary
force initiates nucleation which aggregates partially immersed particles [123]. Next, liquid
evaporation drives the convective particle flux to grow and assemble into an ordered
array. Defects may form at the drying front of the solvent due to the non-uniform drying
process [124]. This defect can be minimised by allowing particles to be mobile in the
interface as discussed in the next section on interfacial self-assembly.

3.1.3. Interfacial Self-Assembly

Interfacial self-assembly is commonly used to place particles at the fluid–fluid in-
terface [113]. Compared to assembly on a solid substrate, interfacial assembly is more
suitable for upscaled production due to its speed and simplicity. At a fluid–fluid inter-
face, highly mobile particles rapidly achieve equilibrium for self-assembly. This process
is attributed to the rapid diffusion of particles and reagents in either fluid medium [125].
The Langmuir–Blodgett (LB) method of self-assembly is widely adopted for the liquid–
air interface. Particles are confined to a 2D thin film of volatile solvent stretched over a
water surface. The high surface tension of water supports the amphiphilic particles and
facilitates their assembly by laterally compressing them into a monolayer [126,127].The
particles are confined into a 2D thin film of volatile solvent stretched over the water surface.
Liquid–liquid interfaces present in oil-in-water or water-in-oil emulsions can trap and
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assemble amphiphilic particles. In this case, the reduction in interfacial energy drives the
self-organisation of particles and stabilises the Pickering emulsion. As assembly is achieved
over a curved interface, 3D structures are formed in contrast to the planar 2D assembly
with the LB method [128].
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Figure 4. Assembly of micro- and nanoparticles. (A) Assembly of particles on patterned surface;
(B) Formation of core–shell particles with layer-by-layer assembly on Pickering emulsion surfaces:
(i) Poly (sodium styrene sulfonate) particles suspended in water, (ii) Surface modification, (iii) Emulsi-
fication to form oil-in-water Pickering emulsion; (C) 2D assembly of particles suspended in a medium:
(i) Random arrangement of particles in thick layer of medium, (ii) Particles assembly into 2D as
medium evaporates; (D) Suspended magnetic particles successively arrange into 1D chain, 2D sheet,
and 3D crystal with increasing magnetic field strength and particle concentration; (E) Assembly of
suspended particles in a microfluidic channel using surface acoustic wave; (F) Experimental setup of
optofluidic assembly of particles.

3.2. Directed Assembly

Directed particle assembly is driven by external factors such as light [129], magnetic
field [130], electric field [131], sound [132], or their combinations [133]. The external factors
control the assembly process to form large-scale ordered and hierarchical patterns [134].
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3.2.1. Magnetic Field

Magnetic-field-assisted assembly is unique due to its instantaneous and anisotropic in-
teractions. This assembly method enables contactless manipulation independent of changes
in temperature or pH value [135]. The strength and spatial distribution of magnetic fields
can be programmed to enable fine control over the assembly [136]. Ge et al. synthesised
novel superparamagnetic magnetite colloidal nanoparticles that assembled into 1D particle
chains with tuneable photonic properties [137]. He et al. demonstrated that 1D photonic
structures formed in a weak magnetic field exhibited a fast and reversible response to
external magnetic fields [138]. Figure 4D demonstrates a step-by-step assembly of particles.
Structures such as 1D chains and 2D sheets were achieved by increasing the strength and
gradient of the magnetic field. This method has the potential to form a 3D assembly as well.

3.2.2. Electric Field

Electrically conductive or dielectric particles assemble under an applied electric field.
Particles suspended in liquid media readily respond to alternating (AC) or direct current
(DC) electric fields, enabling them to be trapped or transported. Electrophoresis manip-
ulates charged particles in a DC field, whereas dielectrophoresis manipulates dielectric
particles in an AC field. Assembly is controlled by modifying the applied electric field
strength and properties of the media such as dielectric constant and viscosity [131,133].

3.2.3. Acoustics

Pressure nodes in standing acoustic waves have been used to trap particles for assem-
bly. Transducers generate standing waves within a reflective microchamber and concentrate
particles at the pressure nodes. However, the size of the assembly is restricted by the sat-
uration limit of the pressure nodes [139]. An acoustics-based approach for field-induced
assembly is non-specific as it interacts with a broad range of materials with different mor-
phologies including carbon nanotubes, silver nanowires, polystyrene spheres, microscopic
hydrogels, aqueous droplets in oil, and mammalian cells [140]. The directed assembly
technique can be integrated with microfluidic devices to achieve continuous acoustofluidic
assembly (Figure 4E) [141]. Yang et al. employed an acoustic field to tune the particle
concentration and magnetic field to control interparticle interactions [142].

3.2.4. Light

A temperature gradient induced by laser irradiation causes particle migration via
thermophoresis. Figure 4F illustrates particle trapping on a substrate surface [143]. A
low-intensity laser coupled with a patterned surface traps colloidal particles and sorts
them according to the matching patterns [144]. In the case of metallic particles, 2D surface
plasmon excitations at metal–dielectric interfaces direct the assembly with both optical
and local thermal-convection forces [145]. Furthermore, Yamaguchi et al. assembled silica
microspheres into hexagonally closely packed arrays or linear particle chains by changing
the laser power [146].

4. Sorting

Particles are produced with a distribution of shapes and sizes and form random
aggregates due to non-ideal synthesis processes. In the case of biological samples, ana-
lytes attached to microparticles may contain extraneous components. As such, the target
components need to be purified or sorted subsequently [147,148].

Particle sorting is critical and has application in diagnostics, chemical or biological
analysis, food or chemical processing, and environmental assessment [149]. Core–shell
particles introduce additional complexity to sorting as variations are present in individual
core and shell components. Moreover, these particles can have ruptured shells, missing
shells, or missing cores. Continuous particle sorting allows for gaining uniform and defect-
free core–shell particles. This form of quality control is highly desirable for applications in
chemical synthesis, mineral processing, and biological analysis [147]. Existing particle sort-
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ing strategies can be modified or directly used in sequence for sorting core–shell particles
effectively. Figure 5 illustrates the key criteria and methods for sorting core–shell particles.
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The sorting process involves detection and separation of particles into groups based
on physical properties such as size, shape, density, deformability, electrical, magnetic, or
optical properties [150]. Particle sorting techniques are broadly divided into passive or
active methods. Passive methods sort particles with hydrodynamic forces without further
external energy input.

Microfluidic devices sort particles passively by (i) modifying the geometry of microflu-
idic channels or (ii) controlling the interaction between suspended particles. The latter
category includes techniques such as inertial microfluidic separation, pinched flow frac-
tionation, microfiltration, and deterministic lateral displacement. On the other hand, active
sorting methods employ external drivers such as electromagnetic, acoustic, or temperature
fields. Active sorting techniques are classified based on their input energy sources [151].
Passive sorting methods do not require particles that respond to external fields. Neverthe-
less, active sorting methods tend to achieve higher efficiency and throughput, albeit at a
higher cost due to the more complex setup.

4.1. Passive Sorting
4.1.1. Pinched Flow Fractionation

Pinched flow fractionation uses laminar flow to continuously sort suspended particles
based on their sizes [152]. A buffer focuses the fluid containing suspended particles
(Figure 6A). In a laminar flow, the particles align with streamlines such that small particles
are closer to the wall, whereas large ones are positioned away from the centre. This
difference in particle position widens due to the separation of streamlines as the flow
passes from a pinched segment into a broad segment. Consequently, particles are separated
based on their sizes in the direction perpendicular to the fluid flow [149].

The size limit of sorted particles depends on the precise distribution of flow rates at
the fluid inlets. The fractionation quality is based on the shape of the pinch and channel
widening transition [147]. This technique is scalable and versatile as separation efficiency
is independent of particle quantity [153]. Core–shell particles of similar size cannot be
separated from solid particles using the original pinched flow technique, because of the
same size. Core–shell particles can be sorted based on the difference in density between
core and shell materials. Size- and density-based methods utilise pinched flow fractionation
and sedimentation effects to sort core–shell particles. First, particles pass through a pinched
segment for size-based sorting. Next, particles enter a vertical curved channel where the
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sedimentation effect separates them according to their densities [154]. Rotating the whole
device introduces a centrifugal force that further enhances the sorting efficiency.
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Figure 6. Particle sorting methods. (A) Microparticle sorting by pinched flow fractionation; (B) Mi-
croparticle sorting by deterministic lateral displacement; (C) Particle sorting by inertial microfluidic
separation; (D) Schematics illustrate microfilter arrangements for particle sorting: (i) Dead-end filter,
(ii) Crossflow filter; (E) Density-based sorting of particles in acoustic field; (F) Magnetic particle
separation based on their magnetic properties.

4.1.2. Deterministic Lateral Displacement

Huang et al. reported particle sorting based on deterministic lateral displacement.
This method continuously sorts particles with diameters ranging from sub-micrometre to
several millimetres at a resolution of 10 nm. Figure 6B illustrates a specific arrangement
of posts within a channel to precisely control the trajectory of particles toward separation.
When a medium containing particles flows through an array of posts, the posts obstruct
the flow in such a way that only smaller particles follow their defined routes. Particles
are sorted relative to a critical diameter, which is set by the size of each post and the gap
between them [155]. Clogging is also an issue with this method as flow stagnation in the
vicinity of the posts represent unintended particle traps [149].
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4.1.3. Inertial Microfluidic Separation

Inertial forces drive suspended particles to stable equilibrium positions in the channel
cross-section [156]. For fluid flow in a curved channel, the centrifugal force creates a
secondary flow that is perpendicular to the main flow and exerts a drag force on the
suspended particles [157]. Smaller particles are more susceptible to drag forces, whereas
larger ones are susceptible to inertial forces. Figure 6C illustrates inertial microfluidic
separation in a spiral microchannel. Ukita et al. proposed an inertial microfluidic separation
method based on the density gradient of the suspended liquid suitable for sorting of core–
shell particles [33]. In this method, particles are suspended in two fluids with matching
densities that flow through microchannels rotating at high speeds. The channels run along
the edge of a disk-shaped device such that the higher-density liquid flows on the outer side.
This method can sort particles with a density mismatch as small as 50 kg/m3.

4.1.4. Microfiltration

Microfiltration is one of the most widely used methods for separating microparticles
and cells [149]. This method sorts particles according to their sizes and can be divided
into three main categories according to the filtering structures: membranes, pillars, and
weirs. Microfiltration utilises micropores in a membrane or gaps between pillars, serving
as a sieve for sorting [158]. Membranes are especially suited for fluids with low particle
concentration as they are susceptible to clogging [159]. In dead-end filters, the filter plane
is parallel to the direction of fluid flow (Figure 6D(i)). Conversely, the plane of a crossflow
filter is perpendicular to the fluid flow, as illustrated by Figure 6D(ii). Dead-end filtration is
more efficient for capturing large particles. However, they are prone to clogging. Crossflow
filtration avoids clogging as large particles are constantly washed away [160].

4.2. Active Method
4.2.1. Acoustic Sorting

A surface acoustic wave (SAW) is an acoustic wave travelling along the surface of
a substrate. A standing surface acoustic wave (SSAW) separates particles based on their
physical properties such as size, density, or compressibility. Large particles experience
large acoustic forces and are displaced more than smaller particles. A SSAW device is also
suitable for sorting core–shell particles from solid microspheres as it allows for particle
sorting based on density. The applied acoustic radiation force holds particles to pressure
nodes or antinodes according to the acoustic contrast factor:

φ =
ko − kp

3ko
+

ρp − ρ0

2ρp + ρo
(1)

where φ is the acoustic contrast factor, kp is the isothermal compressibility of the particle,
ko is the isothermal compressibility of the fluid, ρp is the density of the particle, and ρ0 is
the density of the fluid. Equation (1) shows that a SSAW has the ability to sort core–shell
particles from solid microspheres based on the difference in their densities [161]. Figure 6E
shows that particles denser than the suspending medium have a positive contrast factor
and assemble at the nodes of the SSAW. Conversely, a negative contrast factor causes lighter
particles to focus on the antinodes. As a result, denser particles migrate towards the sides
of the channel, whereas lighter particles remain at the centre of the channel.

4.2.2. Magnetic Field

The magnetophoretic force sorts magnetic particles in a non-uniform magnetic field
according to their size and density. The migration of magnetic particles in a diamagnetic
medium is termed positive magnetophoresis. The migration of diamagnetic particles in a
magnetic medium is called negative magnetophoresis [162]. The magnetic force, Fm, acting
on a particle suspended in a fluid is represented by:
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Fm =
V(χ− χm)

µ0
(∇ · B)B (2)

where V is the particle volume, χ is the magnetic susceptibility, χm is the susceptibility
of the surrounding medium, µ0 is the magnetic permeability of air, and ∇ · B represents
the field gradient of the magnetic flux density B. Sorting based on the magnetic field is
simple and can be applied to particles having various magnetic behaviours. Conversely,
density-based sorting methods are only applicable to diamagnetic particles and require
a complex magnetic levitation setup. The simplest approach is sorting particles based
on their differences in magnetization [163]. A magnetic field perpendicular to a fluid
flow deflects magnetic particles and diverts them into distinct collection zones (Figure 6F).
Lower flow rates ensure efficient separation and prevent inertial forces from dominating
magnetophoresis. The magnetophoretic force experienced by the particles depends on its
size and magnetic characteristics. Large particles deflect more than smaller ones. Magnetic
levitation can also be used for particle sorting. A typical magnetic levitation platform
consists of two magnets with the same poles facing each other, forming a non-uniform
magnetic field between them. Particles of different densities levitate at distinct heights
depending on the balance between buoyancy force and magnetic force [164]. This method
was reported to sort particles with a density difference of 60 kg/m3 [165].

4.2.3. Electric Field

Dielectric particles polarise and experience a dielectrophoretic force in a non-uniform
electric field. This force enables suspended particles to migrate in a liquid. The method is
especially useful when the particles and the medium have significantly different dielectric
properties. For example, polymeric particles are much less polarisable as compared to
the surrounding liquid such as water. The resulting negative dielectrophoretic effect was
utilised in a curved microchannel to sort particles based on their sizes [166].

As dielectrophoretic force is directly proportional to particle size, large particles are
deflected from the streamlines. Equation (3) describes the relationship between dielec-
trophoretic velocity UDEP and the applied electric field, whereas (4) indicates the depen-
dence of the dielectrophoretic mobility of particles on its size and properties of the medium:

UDEP = µDEP(E · ∇E) (3)

µDEP =
ε f d2σp − σf

6η f σp + 2σ f
(4)

where µDEP is the dielectrophoretic mobility of particles, E is the local electric field, εf is the
permittivity of the fluid, d is the particle diameter, η f is the fluid viscosity, σp is the electric
conductivity of the particles, and σf is the electric conductivity of the fluid [167].

Core–shell particles for biological applications have a polymeric shell and an aqueous
core. The mismatch in dielectric properties allows for sorting of the core–shell particles [168].
In the case of an AC electric field, the dielectrophoretic force depends on the field strength,
AC frequency, and properties of the medium. The applied electric field generates positive
or negative dielectrophoretic responses from the particles depending on the frequency.
Dielectrophoretic sorting is achieved when the particles move towards the local maxima or
minima of the electric field [169].

4.2.4. Light

An optical tweezer is a tightly focused laser beam that traps particles [170]. Particles
are trapped in directions perpendicular to and along the beam propagation axis. The
trapping capability depends on the difference in refractive index between the medium
and the trapped particles, the size and mass of the particles, the laser wavelength, and the
absorption rate of the particles [171,172]. Optical tweezing is commonly used to separate
particles according to their size, density, and refractive index. Exposing two particles of
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the same size but different refractive indices to changing wavelengths of light, Zhang et al.
demonstrated that the optical force changes faster for the particle with a higher refractive
index, enabling their separation [34].

5. Triggered Release

Core–shell particles serve as biological sensors [5], cell culture platforms [18], and
image contrast enhancing agents in diagnostics [173]. These particles are also widely used
in storage, transport, and triggered release of drugs [13]. These applications require the
particle shell to isolate the core from its surrounding to avoid contamination. The shell
should physically support the core without unintended release. Keeping these constraints
in mind, the shells are designed to respond to a specific stimulus in one or more stages [39].
For instance, PNIPAM incorporated with gold nanoparticles is a common heat-responsive
polymer that expands or contracts when exposed to infrared (IR) irradiation [174].

Triggered release of core–shell particles occurs when external stimuli cause signifi-
cant changes in material properties. As a result, the shell releases the core content into
the surroundings. Triggered release strategies include thermal, physical, and chemical
methods [175]. Thermal methods utilise temperature-dependent changes in the properties
of shell materials [37]. Figure 7A illustrates various heating strategies for triggered release.
Electromagnetic fields in the form of an alternating magnetic field, microwaves, or IR
irradiation directly heat the core–shell particles. On the other hand, indirect heating targets
the suspending liquid instead of the core–shell particles. Physical methods rely on mechan-
ically rupturing the shell via introduction of microbubbles or magnetic particles. Figure 7B
illustrates common methods for rupturing the shell. Chemical methods are suitable for
biocompatible materials that respond to stimuli such as pH, glucose concentration, ionic
strength, and enzymatic catalysts.

5.1. Thermally Triggered Release

Core–shell particles with a heat-sensitive polymeric shell respond to changing temper-
ature either by expansion or contraction, and the shell expands to form a loose polymer
network that leads to triggered release [41]. Such a volumetric phase transition of particles
is based on the degree of cross-linking of the polymeric network. A temperature-sensitive
polymer is made up of monomers such as N-isopropylacrylamide (NIPAM) [176], N,N-
diethylacrylamide (DEAM) [177], methylvinylether (MVE) [178], and N-vinylcaprolactam
(NVCl) [179]. Temperature-sensitive polymers are categorised as: (i) Positive temperature-
sensitive polymers that expand at high temperature and contract upon cooling below the
upper critical solution temperature (UCST); or (ii) negative temperature-sensitive polymers
that expand at low temperatures and contract on heating above the lower critical solution
temperature (LCST) [180]. This substantial change in volume around a critical temperature
is useful for controlled drug delivery [181].

5.1.1. Heating by an Alternating Magnetic Field

Core–shell particles can generate heat for triggered release using nanometre-sized
magnetic particles embedded in the shell. In the presence of an alternating magnetic field,
magnetic moments force the magnetic particles to align with the field. At high frequen-
cies, the magnetic moment lags the inducting field. Hysteresis between the magnetising
alternating field and the induced magnetic moment results in energy loss as heat [182]. In
addition, magnetic particles suspended in the core liquid also heat the core in the presence
of alternating magnetic fields [183].

The amount of dissipated heat can be determined from the enclosed area of the
magnetisation (M)–magnetising field (H) cycle [184]. The heating efficiency of the magnetic
particles is evaluated by its specific heat absorption rate (SAR):

SAR =
f

ρMNP
µ0

∮
M(H)dH (5)
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where f is the frequency of oscillation, ρMNP is the density of the magnetic material, and
µ0 is the permeability of free space [185].
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encapsulating insulin and enzyme, enzymatic action on glucose coverts it into gluconic acid, high
pH causes shell expansion and triggers release; (D) Ionic concentration tunes electrostatic forces to
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5.1.2. Microwave Heating

Polar molecules serve as electric dipoles due to the imbalance in charge distribution.
The electric field of the microwave creates a torque on the electric dipole which rotates
and aligns itself with the alternating field [175]. At a microwave frequency of 2.45 GHz, a
time delay exists between the frequency of the alternating field and the rotating motion of
electric dipoles. This delay corresponds to the loss of the electromagnetic energy in the form
of heat, similar to heating induced by a magnetic field [186]. Microwave heating depends
on material properties such as electric conductivity, permittivity, and permeability as well
as irradiation conditions such as electromagnetic field intensity and frequency. Microwave
irradiation causes three types of heating, namely: (i) conduction loss heating, (ii) dielectric
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heating, and (iii) magnetic loss heating. Accordingly, the thermal energy P produced per
unit volume is shown as:

P =
1
2

σ|E|2 + π f ε0ε′′r |E|
2 + π f µ0µ′′r |H|

2 (6)

where |E| and |H| denote the electric and magnetic field strength of the microwave, respec-
tively; f is the frequency of the microwave; ε0 is the dielectric constant in vacuum; ε

′′
r is the

relative dielectric loss factor; µ0 is the magnetic permeability of vacuum; µ
′′
r is the relative

magnetic loss [187].

5.1.3. Infrared Heating

Infrared (IR) light interacts with metal nanoparticles such as gold and produces heat
via the photothermal effect. The nanostructures lead to a significant localised temperature
rise [188]. When irradiated with a given wavelength, free electrons in metals collectively
oscillate in phase with the electric field of the incident light and creates surface plasmon
resonance (SPR). This resonance increases the strength of the electromagnetic field at the
metal surface by multiple folds [189]. The energy stored in the form of surface plasmons
is released via re-emission of light or dissipation of heat. When heat dissipation is the
dominant mechanism for energy release, it substantially increases the temperature of the
metal particles and their immediate surroundings [181].

5.2. Physically Triggered Release
5.2.1. Ultrasound

Ultrasound is a longitudinal pressure wave at frequencies greater than 20 kHz [181].
As they propagate through a medium, ultrasound waves attenuate due to absorption
and scattering acoustic energy. This attenuation increases with frequency and results
in pressure variation, heating, and cavitation. At frequencies above 1 MHz, ultrasound
ruptures thermosensitive core–shell particles via localised heating [190].

The cavitation effect is used to trigger the release of another category of core–shell
particles known as microbubbles that consist of micrometre-sized bubbles encapsulated
with surfactants, lipids, proteins, polymers, or a combination of these materials [17]. The
high compressibility of microbubbles enables them to deform throughout the compression
and rarefaction cycles of ultrasonic waves. The type of cavitation depends on the amplitude
and frequency of the ultrasound wave as well as the size and material properties of the
microbubble. Cavitation is categorised according to the mechanical index (MI), which is
determined by the peak negative pressure (PnP) and the centre frequency (Fc) as:

MI =
PnP√

Fc
(7)

Microbubbles exist either in a stable regime or inertial cavitation regime, depending on
their MI. The inertial cavitation regime appears at MI ≥ 0.8, where shock waves generated
at lower frequencies and higher-pressure conditions can be used for triggered release. At
MI ≤ 0.8, microbubbles undergo stable cavitation over many acoustic cycles and find
applications as contrast enhancers in diagnostic imaging [191].

5.2.2. Magnetic Field

The magnetic force Fm acting on a magnetisable particle of volume Vp and magnetic
susceptibility κp placed in a magnetic field H and medium with susceptibility κ f is [184]:

Fm =
1
2

µ0

(
κp − κ f

)
Vp∇H2 (8)

where µ0 is the magnetic permeability of vacuum. When such particles are embedded into
a polymeric core–shell particle and exposed to an alternating magnetic field, the magnetic



Micromachines 2023, 14, 497 19 of 28

and polymeric shell periodically deforms. The oscillatory motion physically ruptures the
shell and pumps the core material into the surroundings [43]. Low frequency minimises
heating caused by the alternating magnetic field on the core–shell particle [184].

5.3. Chemically Triggered Release
5.3.1. pH

Structures made of pH-sensitive polymers rupture when placed in an acidic or basic
medium due to polymer dissociation [192]. Utilising these properties, the shell of core–shell
particles can be triggered to release its content by changing the surrounding pH. Polyacids
such as poly(acrylic acid) (PAA) or poly(methacrylic acid) (PMAA) contain carboxyl groups
that dissociate in basic pH environments, leaving negatively charged COO-groups within
the matrix that repel each other. The elongated polymer chains increase the pore size of the
shell which allows the surrounding water to expand the polymer [193]. The opposite effect
occurs in polybases such as poly(N,N’-dimethylamino ethyl methacrylate) (PDMAEMA),
which accept protons from an acidic environment. The pH-change-triggered transition
between the expanded and contracted state of the polymer network generates a pumping
effect and forces the core to diffuse out of the matrix. Pore size expansion of pH-responsive
polymers is controlled by combining different proportions of polyacid/base monomers
in the copolymer matrix, or by modulating the electrostatic repulsion between charged
species [41].

5.3.2. Glucose

Core–shell particles were used to transport insulin to glucose-rich environments within
the human body for diabetes treatment [41]. The insulin-loaded core is encapsulated by
a pH- and glucose-sensitive hydrogel shell. The polymer matrix of the shell incorporates
glucose oxidase (GOx) that catalyses glucose to gluconic acid. Such core–shell particles are
sensitive to low glucose concentrations due to the high effectiveness of enzyme catalysis.
The resultant gluconic acid dissociates and reduces the pH of the medium, thus caus-
ing triggered release. Figure 7C illustrates the pH-sensitive core–shell particle releasing
insulin into the surrounding environment [42]. GOx was also used in conjunction with poly-
bases such as poly(2-hydroxyethyl methacrylate-co-N,N-dimethylaminoethyl methacrylate)
(poly(HEMA-co-DMAEMA)) [194]. Polybases expand in low-pH environments to achieve
the same effect of insulin release [195].

5.3.3. Enzyme-Responsive Materials

The high specificity of enzymatic catalysts is highly desirable for biological appli-
cations [196]. Enzyme-responsive materials are typically supported on substrates and
polymer components that control interactions to achieve macroscopic changes [197]. These
changes include expansion of the polymer matrix, solubility variation, or transformation
of surface properties that lead to changes in pore size [195]. These materials respond to a
range of enzymes including lipases, proteases, phosphatases, and redox enzymes. Enzyme-
responsive materials differ according to their hydrogel structures such as: (i) materials that
undergo the sol–gel transition after enzymes selectively hydrolyse crosslinked structures;
or (ii) materials with crosslinks that carry freely hanging enzyme-sensitive components.
Expansion or contraction occurs with an intact overall crosslinked structure [198]. Addi-
tionally, non-polymeric enzyme-supporting substrates respond to an external stimulus by
changing hydrophobicity or adhesion capabilities [196].

5.3.4. Ionic Strength

The ionic strength of a medium affects the size of the micelles, solubility, or expansion
of the polymeric networks for a polymeric shell [199]. For metallic shells, surface cavitation
that weakens the shell occurs in the presence of salt solution of highly reactive metals [200].
Ionic solution causes polymeric shells to deform to the point of disintegration [201]. This
mechanism has been applied for triggered drug release in an ionic environment [202].
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Expansion and contraction characteristics depend on charged groups attached to the shell.
Figure 7D shows that variation in the ionic concentration of the surrounding medium
shields the charged group and prevents shell expansion. For example, in a low-ionic-
strength environment, the shell expands more due to the repulsion between charged
groups. Conversely, higher ionic strength screens the repulsion and limits shell expansion.

6. Conclusions

The present paper discusses manipulation strategies of core–shell particles according
to assembly, sorting, and triggered release. The paper also includes fabrication strategies
and applications of core–shell particles. Core–shell particles offer applications that are
not achievable with individual core and shell components. Core–shell particles find appli-
cations in drug delivery, biosensing, diagnostics, food packaging, catalysis, 3D printing,
microactuators, and water treatment due to their stability, protection against contamination,
and on-demand triggered release.

Core–shell particles utilise well-studied assembly techniques of micro/nanospheres
that harness surface properties of the particles. These methods are categorised as self or
directed assembly based on their sources of energy. Particle sorting is a principal method
that ensures quality control during the fabrication process. This review also discusses how
existing sorting techniques are modified to separate core–shell particles based on size or
density. Lastly, we reviewed thermal, physical, and chemical methods for triggered release
of the core.

Large-scale production of uniform core–shell particles is challenging due to limitations
associated with their fabrication process. For example, core–shell particles produced
by emulsification or sol–gel have limited application due to the use of a surfactant and
inhomogeneous particle surface. Electrospray requires a high voltage that restricts types
of suitable liquids for particle production. Microfluidic methods combined with electro-
hydrodynamics can create highly monodisperse particles. Nevertheless, a combination of
multiple methods may overcome limitations of the individual techniques. Manipulating
core–shell particles also remains a challenging endeavour due to the complexity of adapting
established methods for conventional micro/nanoparticles to core–shell particles. Sorting
particles using microfluidics usually results in low throughputs. Furthermore, microfluidic
devices are prone to blockage, which increases the operational cost and turnover time. A
combination of active and passive methods can increase sorting efficiency. However, this
hybrid approach needs to address the throughput bottleneck created by the least productive
component within the sorting system. In terms of triggered release of core–shell particles,
the general research direction inclines towards multi-responsive materials. Candidate
materials include polymers that merge the LCST or UCST phase transition with another
response such as pH. Such multi-responsive materials will broaden the application of core–
shell particles as sensors or drug delivery vehicles. Despite their promising potential in
drug delivery and bioimaging, the design and implementation of core–shell microparticles
remain difficult due to the easy degradation of multi-responsive materials inside the human
body and require further extensive studies.
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