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An investigation of the effect of resonator dimensions on nonlinear standing waves in shaped
resonators is conducted. Simple forms of the shear viscosity term in the momentum equations are
developed for an axisymmetric~2D! resonator and a low aspect ratio rectangular~3D! resonator. The
cross sections of the resonators are exponentially expanded and the one-dimensional wave equations
are solved by using the Galerkin’s method. The quality factors, pressure waveforms, compression
ratios, and resonance frequencies are calculated for different dimensionless cross sections and
lengths of the resonators. The results show that, apart from the resonator length, the ratio of the
cross-section dimension to the length of the resonator is an important parameter. If the ratio is
greater than 0.04, the characteristics of the shaped resonator are not affected significantly. However,
when the ratio is less than 0.01, the resonance becomes weak, the compression ratio drops
substantially, and the frequency response changes as well. ©2005 Acoustical Society of America.
@DOI: 10.1121/1.1828611#

PACS numbers: 43.25.Gf, 43.20.Hq@MFH# Pages: 96–103
n

a
re
s

ro
les
ge
g

n

e
tu
n

nt
b
m

er
to
ea
n
e
s

th
en

lic
a

n
es
o
m
st
s
.

ure
in
an
sults
ors,
nd
ent

the
reso-
nk,
that
by
the
the

vis-
n

so
sily.
the
is
ss

s
w
sily
tic
en-
r
h
the
low
eso-
ric
lity

tios,
lues
I. INTRODUCTION

The generation of high-amplitude pressure oscillatio
has recently been achieved, both in experiment1 and in the-
oretical modelings,2–5 in shaped resonators. In contrast to
normal cylindrical resonator, the higher-order modal f
quencies in the shaped resonators are no longer multiple
the fundamental frequency, so that the energy transfer f
the fundamental frequency to the higher harmonics is
efficient and the large-amplitude pressures are therefore
erated. Lawrensonet al.1 conducted experiments by shakin
shaped resonators, and standing wave overpressures i
cess of 340% ambient pressure were recorded. Ilinskiiet al.2

developed a one-dimensional model to analyze the nonlin
standing waves in shaped resonators. The large-ampli
pressures, waveform distortion, and resonance freque
shift were calculated and compared with the experime
results. The one-dimensional model was later improved
including the shear viscosity term in the momentu
equation,3 and the energy losses and quality factors w
evaluated. An analytical study was conducted by Hamil
et al.4 to predict and explain the dependence of the nonlin
frequency response on resonator shapes. Most rece
Erickson and Zinn5 proposed a procedure to solve the on
dimensional wave equation for an exponentially shaped re
nator by the Galerkin method. The compression ratio of
maximum to minimum pressures was calculated for differ
flare constants.

The large-amplitude pressure waves may have app
tions in miniature- or microscale fluid mechanics, known
microfluidics. This is currently an active research field6,7

driven by fast development in biomedical engineering a
life science. In the microfluidics, conventional fluid devic
are shrunk in size to control and deliver fluid in miniature-
microscales. The applications of nonlinear acoustics in
crofluidics have been seen, for example, in acou
streaming8 for liquid fluid manipulation in microchannel
and in miniature synthetic jets9 for aerodynamics control
96 J. Acoust. Soc. Am. 117 (1), January 2005 0001-4966/2005
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The generation of high-pressure gas in micro- or miniat
scales is probably more difficult than pumping liquids
microchannels, and it would be interesting to see if this c
be achieved by the shaped acoustic resonators. The re
may be used to develop miniature- or microcompress
which are important in microscale cooling technologies a
other bioengineering applications. This motivates the pres
study. The purpose of this study is to investigate how
nonlinear pressure waves change in a shaped acoustic
nator when the overall dimension of the resonator is shru
especially when the cross section is reduced. It is known
the resonance frequencies are determined primarily
lengths of the resonators, also by the shape variations in
axial direction. The cross sections of the resonators, on
other hand, affect the acoustical field through the shear
cosity. With a full recognition of the comprehensive work o
energy losses conducted by Ilinskiiet al.,3 we develop in the
present article a simple form for the shear viscosity term,
that the effect of the size reduction may be evaluated ea
The one-dimensional wave equation is then solved by
Galerkin method5 for two kinds of shaped resonators. One
an exponentially expanded horn with axisymmetric cro
sections, in which the acoustic field is two-dimensional~2D!.
The length of the resonator isl and radius at the small end i
r 0 . The other is an exponentially expanded horn with lo
aspect ratio rectangular cross sections, which would be ea
fabricated with micromachine technologies. The acous
field in this low aspect ratio rectangular resonator is ess
tially three-dimensional~3D!. The height of the rectangula
cross section is fixed ath and is much smaller than the widt
b for the most part, and the dynamics of the gas inside
horn can be considered as quasi-two-dimensional. The
aspect ratio rectangular resonator is referred as the 3D r
nator in this paper to distinguish it from the axisymmet
resonator, which is referred as the 2D resonator. The qua
factors, dynamic pressure waveforms, compression ra
and resonance frequencies are calculated for different va
/117(1)/96/8/$22.50 © 2005 Acoustical Society of America
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of r 0 / l andh/ l ranging from 0.01 to 0.1, in which the she
viscosity may play an important role in affecting the chara
teristics of shaped resonators.

II. SHEAR VISCOSITY TERMS AND WAVE EQUATIONS

A. Basic equations

We consider the one-dimensional acoustic wave field
a 2D resonator driven by an accelerationa(t) along the axial
direction, as shown in Fig. 1~a!. The resonator is closed a
both ends and the cross section is expanded in thex direc-
tion. The axial velocity along thex direction is u
5u(x,j,t), depending onx, t, and the radial locationj. The
velocity is not uniform over the cross section of the reso
tor, especiallyu(x,j,t)50 on the wall of the resonator. Th
average velocity ofu over the cross section can be calculat
by

ū~x,t !5
1

pr 2 E0

r

2pu~x,j,t !j dj, ~1!

and the mass flux through the cross section is therefore

F5E
0

r

2pru~x,j,t !j dj5rūpr 2. ~2!

It can be deduced, according to Eq.~2!, that the velocityu in
the continuity equation and momentum equation develo
by Ilinskii et al.2 was actually the average velocityū(x,t),
and these equations can be rewritten as

]r

]t
1

1

r 2

]

]x
~r 2rū!50, ~3!

]ū

]t
1ū

]ū

]x
52

1

r

]p

]x
2a~ t !

1
~z14h/3!

r

]

]x S 1

r 2

]

]x
~r 2ū!D , ~4!

wherep is the pressure,a(t) is the acceleration of the reso
nator, andz andh are coefficients of bulk and shear viscos
ties, respectively. We show in the following that the dissip
tive term in Eq.~4! can be derived from the viscous stres
together with an additional shear viscosity term. The gen
dissipative term used by Ilinskiiet al.2 can be expressed as10

FIG. 1. Geometry and coordinates of the horn-shaped resonators.~a! 2D
resonator, and~b! 3D resonator.
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]xk]xk
1S z1

1

3
h D ]2uk

]xi]xk

5h~¹2u! i1S z1
1

3
h D @¹~¹•u!# i

5h$~¹2u! i2@¹~¹•u!# i%1S z1
4

3
h D @¹~¹•u!# i . ~5!

Let i in Eq. ~5! be thex component of the velocity vectoru;
the second term on the right-hand side becomes

S z1
4

3
h D @¹~¹•u!# i5S z1

4

3
h D ]

]x
~¹•u!. ~6!

By taking average velocity over the cross section and us
the continuity equation~3! for ¹•u, one obtains the dissipa
tive term in Eq.~4!, which is the viscosity term associate
with the volume expansion of the gas and was derived
Ilinskii et al.2 The first term on the right-hand side of Eq.~5!
is expressed in the cylindrical coordinates (x,j,u) for the 2D
resonator, and for thex component of the velocity it become

h$~¹2u! i2@¹~¹•u!# i%5h
1

j

]

]j S j
]u

]j D . ~7!

Equation~7! is a term induced by the shear motion of th
velocity and is referred as the shear viscosity term. T
evaluation of this term and its average depends on the ve
ity profile over the cross section, i.e.,u(x,j,t). By including
the average of Eq.~7! in Eq. ~4!, one obtains

]ū

]t
1ū

]ū

]x
52

1

r

]p

]x
2a~ t !1

~z14h/3!

r

]

]x

3S 1

r 2

]

]x
~r 2ū!D 1

h

r

1

j

]

j S j
]u

]j D . ~8!

A similar procedure has been applied to the 3D resona
shown in Fig. 1~b!, in a Cartesian coordinate system, a
Eqs.~3! and ~4! are modified as

]r

]t
1

1

hb

]

]x
~hbrū!50, ~9!

]ū

]t
1ū

]ū

]x
52

1

r

]p

]x
2a~ t !1

~z14h/3!

r

]

]x

3S 1

hb

]

]x
~hbū! D1

h

r

]2u

]j2
. ~10!

In Eq. ~10!, h]2u/]j2 is the shear viscosity term, and th
evaluation of this term depends also on the velocity pro
over the duct cross section. The shear viscosity terms in b
Eqs.~8! and ~10! are derived in the next section.

B. Velocity profiles and shear viscosity terms

For the 2D resonator, we consider a tube with a circu
cross section of radiusr; the linear equation associated wi
the shear viscosity is

r
]u

]t
52

]p

]x
1h

1

j

]

]j S j
]u

]j D . ~11!
97Luo et al.: Effect of resonator dimensions
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By settingu5v(x,j)eivt, ]p/]x5pxe
ivt ~the real part will

be taken from the results!, and substituting them into Eq
~11!, one obtains

]2v

]j2
1

1

j

]v
]j

1b2v5
px

h
, ~12!

where b252( irv/h), and b5(12 i )Arv/2h. The solu-
tion of Eq.~12!, subject to boundary conditionvuj5r50 and
v being finite atj50, is

v5
px

hb2 F12
J0~bj!

J0~br ! G . Thus,

u5veivt5U~x,t !F12
J0~bj!

J0~br ! G , ~13!

whereU(x,t)5pxe
ivt/hb2. The average ofu over the cross

section of the tube is

ū5
U~x,t !

pr 2 E
0

r

2pjF12
J0~bj!

J0~br ! Gdj

5U~x,t !F12
2J1~br !

brJ0~br !G . ~14!

Using the velocity profile~13!, the shear viscosity term in th
momentum equation can be evaluated as

h
1

j

]

]j S j
]u

]j D5U~x,t !
hb2

J0~br !
J0~bj!. ~15!

The average of the shear viscosity term~15! over the tube
cross section is

h
1

j

]

]r S j
]u

]j D5U~x,t !
hb2

J0~br !

1

pr 2 E0

r

2pjJ0~bj!dj

5U~x,t !
2hb

r

J1~br !

J0~br !

5
2hb

r

J1~br !

J0~br ! F12
2J1~br !

~br !J0~br !G
21

ū, ~16!

in which Eq.~14! has been used to eliminateU(x,t). It can
be shown11 that for ubr u@1, J1(br )/J0(br )→2 i ; therefore

h
1

j

]

]r S j
]u

]j D ——→
ubr u@1 2hb

r
~2 i !F11

2i

~br !G
21

ū

.~212 i !
A2hrv

r
ū. ~17!

By taking the real part of Eq.~17!, we have

h
1

j

]

]r S j
]u

]j D ——→
ubr u@1

2
A2hrv

r
ū. ~18!

For the 3D resonator, we consider a two-dimensional d
Eqs.~11! and ~12! in this case become

r
]u

]t
52

]p

]x
1h

]2u

]j2
, ~19!
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t;

]2v

]j2
2b2v5

px

h
, ~20!

whereb25 irv/h, andb5(11 i )Arv/2h. The velocityu
obtained from the solution of Eq.~20!, subject to boundary
conditionsvuj5h5vuj5050, is

u5veivt5U~x,t !H cosh~by!21

2
cosh~bh!21

sinh~bh!
sinh~by!J , ~21!

whereU(x,t)5pxe
ivt/hb2. The average ofu over the duct

height is

ū5
U~x,t !

bh H sinh~bh!2bh2
@cosh~bh!21#2

sinh~bh! J . ~22!

The average of shear stressh]2u/]j2 can be worked out
based on Eq.~21!. By following the same procedure for th
tube, we have

h
]2u

]j2
——→
ubhu@1

2
A2hrv

h
ū. ~23!

The conditionubr u@1 used in Eqs.~18! and ~23! can be
justified by takingh in order of 1025, v in order of 103

~assuming the oscillation frequency to be 500 Hz!, so that
ubr u;rArv/h;r 3104. The conditionubr u@1 is therefore
equivalent to ubr u;r 3104@1, or, r @1024 m50.1 mm,
which can always be met in the present study. Equations~18!
and ~23! are the shear viscosity terms to be included in
momentum equation forū. They are equivalent to the term
introduced by Ilinskiiet al.3 but in simpler forms. It should
be pointed out, however, that the dissipations in the work
Ilinskii et al.3 include the turbulence induced energy loss a
therefore are more comprehensive when the pressure am
tudes are large.

C. Dimensionless wave equations

With the shear viscosity term expressed in Eq.~18!, the
momentum equation~8! for the 2D resonator can now b
written as

]ū

]t
1ū

]ū

]x
52

1

r

]p

]x
2a~ t !

1
~z14h/3!

r

]

]x S 1

r 2

]

]x
~r 2ū!D

2
A2r0hv

r r
ū. ~24!

It can be seen from Eq.~24! that the shear viscosity term
takes into account the effect of frequencyv and dimensionr.
The dissipation increases asv increases andr decreases. By
introducing the velocity potential

ū5
]w

]x
, ~25!
Luo et al.: Effect of resonator dimensions
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and following the same procedure developed by Ilins
et al.2 and Erickson and Zinn,4 the dimensionless wave equ
tion becomes

1

p2S

]

]X S S
]F

]X D2V2
]2F

]T2
1

GBV

p3S

]2

]T]X

3S S
]F

]X D2
GSV3/2

R

]F

]T

5V
]A

]T
X1A~T!

]F

]X
1

g21

S
A~T!X

]

]X S S
]F

]X D
12V

]2F

]X]T

]F

]X
1

~g21!V

S

]F

]T

]

]X S S
]F

]X D
1

g21

2S S ]F

]X D 2 ]

]X S S
]F

]X D . ~26!

The dimensionless variables are

X5
x

l
, T5vt, S5

pr 2

l 2
, R5

r

l
, A5

a

lv0
2

,

F5
w

l 2v0

, V5
v

v0
. ~27!

GB5
pdv0

c0
2

, d5
z14h/3

r0
, GS5A 2h

pr0c0l
,

v05
pc0

l
. ~28!

Here, GB is the same asG and D introduced by Ilinskii
et al.2 and Erickson and Zinn,4 respectively,GS is a param-
eter associated with the shear viscosity,l is length of the
resonator, andc0 is the speed of sound. Equation~26! shows
that the coefficient of the shear viscosity term is invers
proportional to the dimensionless cross-section size,R, and
the square root of the resonator length,Al .

Similarly, by substituting Eq.~23! into Eq. ~10!, we ob-
tain the momentum equation for the 3D resonator

]ū

]t
1ū

]ū

]x
52

1

r

]p

]x
2a~ t !

1
~z14h/3!

r

]

]x S 1

hb

]

]x
~hbū! D

2
A2r0hv

h
ū, ~29!

and the dimensionless wave equation

1

p2B

]

]X S B
]F

]X D2V2
]2F

]T2
1

GBV

p3B

]2

]T]X

3S B
]F

]X D2
GSV3/2

H

]F

]T

5V
]A

]T
X1A~T!

]F

]X
1

g21

B
A~T!X

]

]X S B
]F

]X D
12V

]2F

]X]T

]F

]X
1

~g21!V

B

]F

]T

]

]X S B
]F

]X D
1

g21

2B S ]F

]X D 2 ]

]X S B
]F

]X D , ~30!
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i
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where H5h/ l and B5@b(x)#/ l , and other parameters ar
the same as those in Eqs.~27! and~28!. It has been assume
that the shear viscosity is important only on upper and low
walls in the 3D resonator.

III. EFFECT OF RESONATOR DIMENSIONS

A. Quality factors

The energy loss in a dynamic system may be measu
by quality factors, which is the ratio of total energy stored
the system to the energy dissipated in one cycle. There
many ways to calculate the quality factor and one of them
to use the decay factor,k, from the time factore2kt, and the
quality factor is obtained by12

Q5
p f 0

k
, ~31!

where f 0 is the fundamental frequency of the system. Equ
tion ~26! can be reduced to a linear equation by dropping
quadratic terms and the driving forceA

]2F

]T2
2

1

V2p2

]2F

]X2
5

GB

Vp3

]3F

]T]X2
2

GS

V1/2R

]F

]T
. ~32!

By substituting the fundamental modeF5A cos(pX)e(i2s)T

5Acos(pX)e(i2s)vt into Eq. ~32!, wheres5k/v0 is the di-
mensionless decay factor, takingV51 (v5v0), at which
the energy losses are the maximum,3 and keeping terms o
the first order ofs, one obtains

s5
1

2 S GB

p
1

GS

R D . ~33!

In Eq. ~33!, R follows the resonator expansion profileR(X)
5(r 0 / l ) f (X). By denoting

K5E
0

1 dX

f ~X!
, ~34!

the average ofs over the resonator length can be calculat
as

s̄5
1

2 S GB

p
1

GS

r 0 / l E0

1 dX

f ~X! D 5
1

2 S GB

p
1

KGS

r 0 / l D . ~35!

The quality factor is calculated by

Q5
p f 0

k
5

p f 0

s̄v0
5S GB

p
1

KGS

r 0 / l D
21

5S 1

QB
1

1

QS
D 21

,

~36!

where

QB5
p

GB
5

c0r0l

p~z14h/3!
, ~37!

being the quality factor due to the dissipation associated w
the volume change2

QS5
r 0 / l

KGS
5

r 0

l

1

K
Ap lc0r0

2h
, ~38!

which is the quality factor due to the dissipation associa
with the shear motion in tubes.13 Since the viscosity coeffi-
99Luo et al.: Effect of resonator dimensions



-

to
ed
by

are
cientsz andh are of the order of 1025 andQS /QB is of the
order of Ah,1022, the overall quality factor can be ap
proximated byQS , i.e.,

Q.QS5
r 0

l

1

K
Ap lc0r0

2h
. ~39!

Equation~39! shows that the quality factor is proportional
ratio r 0 / l andAl . The quality factors are calculated, bas
on Eq. ~39!, for four resonators used in the experiment
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Lawrensonet al.1 The parameters of these resonators
listed below.

Cylinder (l 50.10 m), r (x)50.0222 m.
Cone (l 50.17 m), r (x)50.005610.2680x m.
Horn-cone (l 50.24 m),

r ~x!5H 0.0068 cosh~23.86x!, 0<x<0.06 m;

0.01510.134x, 0.06<x<0.24 m.

Bulb (l 50.28 m),
r ~x!5H 0.00720.15x14.1x229.93104x3293106x4, 20.005 08 m<x<0;

l @0.02520.15~x/ l !11.15~x/ l !220.9~x/ l !4#, 0<x<0.28 m.
tors

nd
gas
es as

r
for

ex-

is
-

The results are given in Table I for the resonators filled w
refrigerant~R-134a!.14 The results obtained by Ilinskiiet al.3

are also listed in Table I, which are in a range for ea
resonator depending on the excitation level. It can be s
that most of quality factors are of order of 500, which w
the value measured in the experiment.1 The quality factors
predicted by the present study are generally higher than
values obtained by Ilinskiiet al.,3 especially for the straigh
cylinder. This is probably due to the additional energy lo
associated with turbulence generated by the large-ampli
pressures in the shaped resonators or the shock waves i
straight cylinder.

For the 2D resonator shown in Fig. 1~a!, the radius ex-
pansion function is

f ~X!5eaX/2, ~40!

wherea is the flare constant indicating the expansion ra
The quality factors are computed for differenta and the re-
sults are presented in Fig. 2. The quality factor for the
resonator, shown in Fig. 1~b!, can be obtained by simply
replacingr 0 / l with h/ l and settingK51 in Eq. ~39!, which
is the same for a straight cylinder. The quality factors for
3D resonator and cylinder are also plotted in Fig. 2. It
seen, from Fig. 2, that the 2D resonators have higher qua
factors than that of the 3D resonator and cylinder. This
because the energy dissipation due to the shear viscos
reduced along the 2D resonators as the cross section
expanded, whereas the energy dissipation in the 3D reson
is increased from the small end to the big end, as the he
h between the upper/lower walls is fixed and wall areas
increased. Figure 2 also shows that the 2D resonators
larger flare numbers have higher quality factors. The diff

TABLE I. Quality factors of resonators filled with R-134a.

Results of
Ilinskii et al. ~Ref. 3!

Results of
present study

Measured
value ~Ref. 1!

Cylinder 350–450 1047

;500
Horn- 200–600 740

Bulb 400–900 574
Cone ¯ 745
h
en

he

s
de
the

.

e

ty
s
is

are
tor
ht
e
ith
-

ence of the quality factors between the 2D and 3D resona
affects the pressure waves in the resonators.

B. Waveforms and compression ratios

The one-dimensional wave equations~26! and ~30! are
solved by the Galerkin’s method developed by Erickson a
Zinn.5 For comparison purposes, all parameters of the
inside the resonators are assumed to have the same valu
those used by Erickson and Zinn.5 The coefficients of shea
viscosity and bulk viscosity are of the same order, and
simplicity, we set them to be equal to 1.7E2005 Pa•s. The
resonators are oscillated at

A5A0 cos~T!, ~41!

and the amplitude is fixed atA05531024 throughout the
calculations. The cross sections of both resonators are
panded exponentially as

S5S0eaX, ~42!

whereS05pr 0
2/ l 2 for the 2D resonator andS05b0h/ l 2 for

the 3D resonator. The flare constant,a, is fixed ata55.75 in
the following calculations because the compression ratio
the maximum at this value.5 The dimensionless velocity po
tential,F, is expressed as

FIG. 2. The quality factor versusr 0 / l and h/ l for the 2D-resonator, 3D
resonator, and a straight cylinder.
Luo et al.: Effect of resonator dimensions
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r.
k-

r.

r.
F~X,T!5 (
n51

`

hn~T!Cn~X!. ~43!

The trial functions,Cn(X), have the same forms as tho
used by Erickson and Zinn5 for the resonators sealed at bo
ends. The time-dependent amplitudes,hn(T), are solved by
the techniques suggested by Erickson and Zinn,5 in which
the series of Eq.~43! is truncated atn520. Finally, the pres-
sures are calculated for the 2D resonator by

P

P0
5F12~g21!p2S V
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1

1

2 S ]F

]X D 2

1AX

2
GB

p3

1

S

]

]X S S
]F

]X D1
GSV1/2F

R D G g/~g21!

, ~44!

and for the 3D resonator by

P

P0
5F12~g21!p2S V

]F

]T
1

1

2 S ]F

]X D 2

1AX

2
GB

p3

1

S

]

]X S S
]F

]X D1
GSV1/2F

H D G g/~g21!

. ~45!

In Eqs.~44! and~45!, P0 is the static pressure in the reson
tors. As a reference, the pressure waves obtained by Eric
and Zinn5 at the small end in the 2D resonator are rep
duced here with the same condition by settingGS50 and
assigningGB50.01 in Eq. ~26!, shown in Fig. 3 by the
dashed lines. In their results~the dashed line!, the pressure
waveforms were not dependent on the resonator dimens
such as the resonator lengthl and ratior 0 / l , because there
was no shear viscosity term in the wave equation. The s
lines in Fig. 3 are the pressure waves calculated in
present study using Eqs.~26! and~44!, in which GB andGS

are evaluated according to their definitions and gas par
eters, the resonator length isl 50.2 m, R5r 0 / l 50.023. It is
seen that two waveforms are very similar. In fact, the pr
sure waveforms in the resonator are dependent on the c

FIG. 3. Pressure waveforms at the small end of the 2D resonatoS
5p(r 0 / l )2eaX, a55.75. Dashed line: reproduced for the results by Eric
son and Zinn~Ref. 5!. Solid line: calculated from Eqs.~26! and ~44!, l
50.2 m, r 0 / l 50.023.
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section dimensions,r 0 / l , due to the shear viscosity term
The resonance pressure waveforms at the small end of
2D resonator are plotted for different values ofr 0 / l in Fig. 4.
When r 0 / l is 0.05, the pressure amplitudes are large w
sharp peaks@Fig. 4~a!#, indicating a strong resonance. Whe
r 0 / l is reduced to 0.02, the pressure amplitudes are redu
as well as the sharp peaks@Fig. 4~b!#. When r 0 / l is further
reduced to 0.01@Fig. 4~c!#, the pressure amplitudes are r
duced further and there are no sharp peaks, indicating
the resonance has been weakened due to the energy dis
tion. The resonance frequency changes slightly when the
tio r 0 / l varies, as denoted in the figure for each case. T
similar situation is also observed for the pressure wave
the 3D resonator, which are plotted in Fig. 5. In this case,
waveforms have been smoothed down atr 0 / l 50.02, be-
cause the 3D resonator is more dissipative than the 2D r
nator, as shown by the quality factors in Fig. 3.

The compression ratios are calculated based on

FIG. 4. Pressure waveforms at the small end of the 2D resonatoS
5p(r 0 / l )2eaX, a55.75, l 50.2 m. ~a! r 0 / l 50.05; ~b! r 0 / l 50.02; and~c!
r 0 / l 50.01.

FIG. 5. Pressure waveforms at the small end of the 3D resonatoS
5b0h/ l 2eaX, a55.75, l 50.2 m. ~a! h/ l 50.05; ~b! h/ l 50.02; and~c! h/ l
50.01.
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maximum and minimum pressures from the waveforms,
the results for both 2D resonator and 3D resonator are
sented in Fig. 6, versusr 0 / l for l 50.2 and 0.05 m, respec
tively. It is seen that the compression ratios, forl 50.2 m,
can be greater than 10 whenr 0 / l is greater than 0.04 for the
2D resonator andh/ l is greater than 0.05 for the 3D reson
tor, but drop to 2 or less whenr 0 / l and h/ l are less than
0.01, showing that the cross-section dimension of the re
nator has tremendous effect on the compression ratio. On
other hand, when the overall length of the resonator is
duced, the compression ratio is also reduced, as show
Fig. 6 by the results ofl 50.05 m for both resonators. This
because the shorter length will lead to a higher resona
frequency, and therefore higher dissipation by the shear
cosity. It is seen from Fig. 6 that the compression ratio dr
substantially atr 0 / l 50.02 for the 2D resonator whenl is
reduced from 0.2 to 0.05 m, and increases quickly afterw
A similar situation is also seen for the 3D resonator but
h/ l 50.05. The mechanism associated with these inconsis

FIG. 7. Dimensionless resonance frequency versus cross-section dimen
for both 2D and 3D resonators with lengthl 50.2 m.

FIG. 6. Compression ratios versusr 0 / l andh/ l for the 2D and 3D resona-
tors. The cross-section area isS5p(r 0 / l )2eaX for the 2D resonator, and
S5hb0 / l 2eaX for the 3D resonator,a55.75.
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cies is not clear from the present modeling, and further st
is needed. The results presented in Fig. 6 suggest thatr 0 / l ,
h/ l , andl are probably the control parameters to the reso
tor dimensions for the given driving strength and requir
compression ratio. The comparison between the 2D reson
and 3D resonator in Fig. 6 shows that the compression ra
of the 3D resonator are always lower than that of 2D re
nator. If one takesl 50.05 m andh/ l 50.05, i.e.,l 550 mm
andh52.5 mm, which is a small resonator, one may exp
to have pressure waves with a compression ratio of 3,
cording to the results in Fig. 6. On the other hand, the re
nance may be easier to be excited in a smaller resonator
in a bigger one for the same driving power. When the ex
tation is doubled by settingA05131023 in the above-
mentioned small resonator, the calculation results show
the compression ratio is increased from 3 to 10.

The cross-section dimensions of the resonators are fo
to have minor effect on the resonance frequencies, which
primarily determined by the resonator lengths and the ax
expansion shape. The calculated results for both 2D and
resonators, plotted out in Fig. 7, show that the variation
the dimensionless frequency~V! is less than 1% when the
cross-section dimensions (r 0 / l andh/ l ) change from 0.1 to
0.005. However, the changes in the resonance frequency
dimension parameters produce tremendous difference in
frequency response curves, which are illustrated in Fig. 8
plotting the maximum pressure versus the frequencyV for
the 2D resonator. The frequency response curves at diffe
values of parameterr 0 / l in this case are very similar to th
hardening behaviors of a conical resonator under differ
excitation levels. This resemblance indicates that the reso
tor dimensions affect the dynamic energy of the syst
through the shear viscosities.

IV. CONCLUSIONS

The effect of resonator dimensions on the nonline
standing waves inside the shaped resonators has been
ied. A shear viscosity term has been added to the o
dimensional momentum equation for the average axial ve

ons

FIG. 8. Frequency response curves of the 2D resonator with differen
mension ratiosr 0 / l . S5p(r 0 / l )2eaX, a55.75, l 50.2 m.
Luo et al.: Effect of resonator dimensions
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ity, and the wave equation has been solved by the Gale
method for a 2D~axisymmetric! resonator and a 3D~low
aspect ratio rectangular! resonator, whose cross sections a
exponentially expanded. By calculations of quality facto
the pressure waveforms, and compression ratios, it is fo
that the shear viscosity dissipation plays a crucial role w
the resonator sizes are reduced. The resonator length~l! and
the ratio of the cross-section dimension to the length (r 0 / l
andh/ l in the present study! are two controlling parameters
If r 0 / l andh/ l are greater than 0.04 for the present reso
tors, the typical characteristics of shaped resonators, suc
high-amplitude pressures and hardening behaviors, are
served. Whenr 0 / l andh/ l are less than 0.01, the resonan
becomes weak and the compression ratios drop to 2 and
low, indicating that the resonators are not functioning
these cases to generate large-amplitude pressures, unle
excitation levels are increased. The results also show tha
dimension ratios control the frequency response curves in
same way as the excitation level does, following the hard
ing behavior of the shaped resonators. Although the stud
conducted based on only two specially shaped resonators
results may be similar to other shaped resonators.
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