Effect of resonator dimensions on nonlinear standing waves
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An investigation of the effect of resonator dimensions on nonlinear standing waves in shaped
resonators is conducted. Simple forms of the shear viscosity term in the momentum equations are
developed for an axisymmetri2D) resonator and a low aspect ratio rectang(B3&) resonator. The

cross sections of the resonators are exponentially expanded and the one-dimensional wave equations
are solved by using the Galerkin’s method. The quality factors, pressure waveforms, compression
ratios, and resonance frequencies are calculated for different dimensionless cross sections and
lengths of the resonators. The results show that, apart from the resonator length, the ratio of the
cross-section dimension to the length of the resonator is an important parameter. If the ratio is
greater than 0.04, the characteristics of the shaped resonator are not affected significantly. However,
when the ratio is less than 0.01, the resonance becomes weak, the compression ratio drops
substantially, and the frequency response changes as well0d8 Acoustical Society of America.
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I. INTRODUCTION The generation of high-pressure gas in micro- or miniature
_ _ _ ~ scales is probably more difficult than pumping liquids in

The generation of high-amplitude pressure oscillationsmicrochannels, and it would be interesting to see if this can
has recently been achieved, both in experithend in the-  pe achieved by the shaped acoustic resonators. The results
oretical mo.delllng§,‘ in shaped resonators. In contrast to @may be used to develop miniature- or microcompressors,
normal cylindrical resonator, the higher-order modal fre-yhich are important in microscale cooling technologies and
quencies in the shaped resonators are no longer multiples gfher pioengineering applications. This motivates the present
the fundamental frequency, so that the energy transfer fromy,qy The purpose of this study is to investigate how the
the fundamental frequency to the higher harmonics is |€S§qiinear pressure waves change in a shaped acoustic reso-
efficient and the large-amplitude pressures are therefore gefz o \yhen the overall dimension of the resonator is shrunk,
erated. Lawrensoat al.” conducted experiments by shaking especially when the cross section is reduced. It is known that

shaped resonators, and standing wave overpressures in ex- : . L
X 9 P $e resonance frequencies are determined primarily by

cess of 340% ambient pressure were recorded. llireskai 2 - .
. . ._lengths of the resonators, also by the shape variations in the
developed a one-dimensional model to analyze the nonlinear

standing waves in shaped resonators. The Iarge-amplitud”“al direction. The cross sections of the resonators, on the

: . oether hand, affect the acoustical field through the shear vis-
pressures, waveform distortion, and resonance frequency . . " .
ﬁé/osny. With a full recognition of the comprehensive work on

shift were calculated and compared with the experimental : i )
P P nergy losses conducted by llinskti al.® we develop in the

results. The one-dimensional model was later improved b i _ ) .
including the shear viscosity term in the rnomentumpresent article a simple form for the shear viscosity term, so

equatior® and the energy losses and quality factors Werethat the eff_ect of_the size reductiop may be evaluated easily.
evaluated. An analytical study was conducted by Hamilton '€ One-dimensional wave equation is then solved by the
et al# to predict and explain the dependence of the nonlineaf?a/erkin methoafor two kinds of shaped resonators. One is
frequency response on resonator shapes. Most recent@ €xponentially expanded horn with axisymmetric cross
Erickson and Zinf proposed a procedure to solve the one-S€ctions, in which the acoustic field is two-dimensiof2d). _
dimensional wave equation for an exponentially shaped resothe length of the resonator isand radius at the small end is
nator by the Galerkin method. The compression ratio of thdo- The other is an exponentially expanded horn with low
maximum to minimum pressures was calculated for differenfSPect ratio rectangular cross sections, which would be easily
flare constants. fabricated with micromachine technologies. The acoustic
The large-amplitude pressure waves may have applicéield in this low aspect ratio rectangular resonator is essen-
tions in miniature- or microscale fluid mechanics, known aglially three-dimensiona(3D). The height of the rectangular
microfluidics. This is currently an active research fidld cross section is fixed &tand is much smaller than the width
driven by fast development in biomedical engineering and for the most part, and the dynamics of the gas inside the
life science. In the microfluidics, conventional fluid deviceshorn can be considered as quasi-two-dimensional. The low
are shrunk in size to control and deliver fluid in miniature- oraspect ratio rectangular resonator is referred as the 3D reso-
microscales. The applications of nonlinear acoustics in minator in this paper to distinguish it from the axisymmetric
crofluidics have been seen, for example, in acoustiegesonator, which is referred as the 2D resonator. The quality
streamin§ for liquid fluid manipulation in microchannels factors, dynamic pressure waveforms, compression ratios,
and in miniature synthetic jetor aerodynamics control. and resonance frequencies are calculated for different values
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FIG. 1. Geometry and coordinates of the horn-shaped reson&ipraD = n{(Vzu)i—[V(V . u)]i}+ (+=7m [V(V.u)]i . (5)
resonator, angb) 3D resonator. 3

Leti in Eq. (5) be thex component of the velocity vectar,

of ry/l andh/| ranging from 0.01 to 0.1, in which the shear the second term on the right-hand side becomes

viscosity may play an important role in affecting the charac- 4
[+ n)[V<V~u)]i=

4\ 4
teristics of shaped resonators. (g (V-u). (6)

By taking average velocity over the cross section and using
the continuity equationi3) for V-u, one obtains the dissipa-
ll. SHEAR VISCOSITY TERMS AND WAVE EQUATIONS tive term in Eq.(4), which is the viscosity term associated
A. Basic equations with the volume expansion of the gas and was derived by

We consider the one-dimensional acoustic wave field inIIInSkII et al-The first term on the right-hand side of Bg)

a 2D resonator driven by an accelerataft) along the axial Is expressed in the cylindrical coordinates 0? fqr the 2D
direction, as shown in Fig.(a). The resonator is closed at resonator, and for thecomponent of the velocity it becomes
both ends and the cross section is expanded irxtteec- ) 19/ du
tion. The axial velocity along thex direction is u (VWi —[V(V-u]i}= ”Eg_g( §a—§ :
=u(x,£,t), depending orx, t, and the radial locatiod. The . , . ,

velocity is not uniform over the cross section of the resonaEduation(?) is a term induced by the shear motion of the
tor, especiallyu(x,&,t)=0 on the wall of the resonator. The velocity and is referred as the shear viscosity term. The

average velocity ofi over the cross section can be calculated€Valuation of this term and its average depends on the veloc-
ity profile over the cross section, i.ei(x,&,t). By including

)

b
y the average of E(7) in Eq. (4), one obtains
N 1 (r du _du  1dp (L+49/3) 9
u(x,t)=FJ’02wu(x,§,t)§d§, (1) E+u5:—;5—a(t)+—p X
o 19 nld( ou
and the mass flux through the cross section is therefore X|=—=(%)|+—==<| £=]. (8)
r2 ox p&E\" ¢
; - .
_ _ = 2 A similar procedure has been applied to the 3D resonator,
F jOZWpU(X,f,t)fdg pumr=. @ shown in Fig. 1b), in a Cartesian coordinate system, and
Egs.(3) and(4) are modified as
It can be deduced, according to Eg), that the velocityu in ap 1 4 -
the continuity equation and momentum equation developed EJF b [?—X(hbpu)ZO, 9
by llinskii et al? was actually the average veloci(x,t),
and these equations can be rewritten as Ju _du 1dp (L+49/3) 9
—+tu—=——-——a(t)+ ——— —
ot ax p IX p X
17 2pm=0 ) 2u
Tt T 2 g \PW=Y 19 3u
gt 2 ax -7 nor
X b ax(hbu)) +p o (10
&_U UiU: lip a(t) In Eq. (10), 7d°ul9&? is the shear viscosity term, and the
dat IX p X evaluation of this term depends also on the velocity profile
over the duct cross section. The shear viscosity terms in both
({+47/3) i i i 2 Egs.(8) and(10) are derived in the next section.
+ p x| 2 W, 4

B. Velocity profiles and shear viscosity terms

wherep is the pressurea(t) is the acceleration of the reso- For the 2D resonator, we consider a tube with a circular

nator, and{ and » are coefficients of bulk and shear viscosi- ¢oss section of radius the linear equation associated with
ties, respectively. We show in the following that the dissipa-he shear viscosity is

tive term in Eq.(4) can be derived from the viscous stress,
together with an additional shear viscosity term. The general ~ 4 P 1 J ga_u (11)
dissipative term used by llinskét al? can be expressedds Pot ax 7 E0E\ " o€
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By settingu=uv(x,&)e'“!, ap/dx=p.e'! (the real part will
be taken from the resu)tsand substituting them into Eq.
(11), one obtains

3v
9E?
where %= — (ipw/7), and B=(1—i)Jpw/27n. The solu-

tion of Eq.(12), subject to boundary conditian ._, =0 and
v being finite até=0, is

(12

_ Px _Jo(ﬁf)

v= oy 1 Jo(ﬁr)} Thus,

et _Jo(ﬂg)

u=ve'“'=U(x,t)1 380" (13

whereU(x,t) = pse'“!/ 2. The average ofi over the cross
section of the tube is

Ut (7 30(BE)
2 foz”g{l_ Jo(ﬁm}dg

_ 204(Br) }
Brdo(Br))

u=

1

=U(x,t) (14

(20

where B2=ipw/ 7y, and B=(1+i)Jpw/27. The velocityu
obtained from the solution of Eq20), subject to boundary
conditionsv|z—p=v|z-0=0, is

u=vei‘”t=U(x,t)[cosr(By)—1

coshgh)—1
sinh(Bh)
whereU(x,t)=p,e'“/ »B2. The average ofi over the duct
height is
U(x,t) [cosh Bh)—1]?
Bh sinh(Bh)
The average of shear streszﬁT&f2 can be worked out

based on Eq(21). By following the same procedure for the
tube, we have

sinI"(,By)], (21

u= [sinr(ﬂh)—ﬂh— ] (22)

2u 1B0=1 Do
_ YO 23)

g h
The condition|8r|>1 used in Egs(18) and (23) can be

Using the velocity profil€13), the shear viscosity termin the jystified by taking in order of 10°5,  in order of 16

momentum equation can be evaluated as

”(f“ U2 30
—— | éE—=|=UXt) ——— .
UXANT: Jo(Br) ™0

The average of the shear viscosity te(irb) over the tube
cross section is

(15

1 a( au)_
TE ar fﬁ—g =U(xt)

nB? 1 (r
o) ot a0

_ 27B J1(Br)
IO S
_27B Jy(Br) 23y(Br) |7
T S| (ﬁf)Jo(Br)} b (o
in which Eq.(14) has been used to eliminat#(x,t). It can
be shown! that for|Br|>1, J;(8r)/Jo(Br)— —i; therefore

10 ou\ B> 293 L 2i |71
TEar §a—§ — (=) | Y
V2 _
~(~1-1) ~2 (17)
By taking the real part of Eq17), we have
109 ou| B>t 2npw _
"Ea_r(ga_g - (18)

For the 3D resonator, we consider a two-dimensional duc

Egs.(11) and(12) in this case become

au &p+ d%u 19
p(?t_ IX 7]852’ ( )
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(assuming the oscillation frequency to be 500),Ho that

| Br|~rpwl p~rx10*. The condition Br|>1 is therefore
equivalent to |Br|~rx10*>1, or, r>10 *m=0.1mm,
which can always be met in the present study. Equatib8s
and (23) are the shear viscosity terms to be included in the
momentum equation fon. They are equivalent to the term
introduced by llinskiiet al2 but in simpler forms. It should
be pointed out, however, that the dissipations in the work by
llinskii et al2 include the turbulence induced energy loss and
therefore are more comprehensive when the pressure ampli-
tudes are large.

C. Dimensionless wave equations

With the shear viscosity term expressed in EtB), the
momentum equatiori8) for the 2D resonator can now be
written as

aU+_ u
—TUu
ot

p oX

B \/2Po77wi

o

(24)

It can be seen from Eq24) that the shear viscosity term
takes into account the effect of frequensynd dimensiom.

Yhe dissipation increases asincreases and decreases. By

introducing the velocity potential

de

ox’

(25
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and following the same procedure developed by llinskiiwhere H=h/l and B=[b(x)]/l, and other parameters are
et al? and Erickson and Zinfithe dimensionless wave equa- the same as those in Ed&7) and(29). It has been assumed

tion becomes

1 9/ od ,7P  Gg &
m2s X |~ aX JT?2 735 dTaX
D\ G072 od
X|S—|— —
X R 4T
0By am 2 T x L[ s
SOAGT XA G e ADXGRI S
PD obd (y—1)Q b 9 [ oD
+20Q — — —|S—
AXAT X S 9T aX |\~ aX
y=1(o®\? 9 [ od
25 | ax) x|\ Pax)-
The dimensionless variables are
x<X Towt, 8=, Rl A=
Tp Thet ST Rep AT
q):i, a=2
|2w0 wq
Tow {+4Anl3 [ 2
B: 201 5: 77 ) GS: —7’1
Co Po poCol
7TCO
W=

Here, Gg is the same a$ and D introduced by llinskii
et al? and Erickson and Zinf respectivelyGs is a param-
eter associated with the shear viscosltys length of the 1/{Gg Gg
resonator, and, is the speed of sound. Equati6) shows o= 5(_ _)

that the shear viscosity is important only on upper and lower
walls in the 3D resonator.

Ill. EFFECT OF RESONATOR DIMENSIONS
A. Quality factors

The energy loss in a dynamic system may be measured
by quality factors, which is the ratio of total energy stored in
the system to the energy dissipated in one cycle. There are
many ways to calculate the quality factor and one of them is
to use the decay factok, from the time factoe™ *!, and the

(26)  quality factor is obtained By

7ty
Q=—r, (31
K
wheref is the fundamental frequency of the system. Equa-
tion (26) can be reduced to a linear equation by dropping all
quadratic terms and the driving forée

(27)
PP 1 PP Gy PP Gg dP

aTZ Q272 gX2 Qad aTox? QYR T
By substituting the fundamental mode= A cos@X)e! =7
=Acos@X)e! 2! into Eq. (32), whereo = k/w, is the di-
mensionless decay factor, takifg=1 (0= wg), at which

the energy losses are the maximdirand keeping terms of
the first order ofo, one obtains

(32

(28)

- + R (33

that the coefficient of the shear viscosity term is inversely

proportional to the dimensionless cross-section dzeand

the square root of the resonator lengtfh,

Similarly, by substituting Eq(23) into Eq.(10), we ob-

tain the momentum equation for the 3D resonator

aU+_aU_ 1p .
at " Yox T ax 2l
({+49l3) 0 (1 o
V2ponw —
_ NePoTT
h
and the dimensionless wave equation
1 0 ob PPd  Gg
— — | B—— 2 +
7B X\~ X gT2 3B dTaX
ab\  Gs0¥2 s
X|B—|— A7 ob
( ax) H 4T
0B iam @ L (g2
SO XA Gt g ADX G Box
0 PD b (y—1)Q P 9 [ oD
T XGT X T B aTax| DX
+'y—1 ab\2 9 [ _ od
2B | oX] ax\ "~ ax])’
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In Eq. (33), R follows the resonator expansion profiR¢ X)
=(ro/1)f(X). By denoting

1 dX
K:fom’

the average ofr over the resonator length can be calculated

(39

as
_ 1/G Gs (1dX 1/Gg KG
o= | — e — [ | =2 2 2. (35
2\ 7 rgll Jof(X)] 2\ @ 1o/l
29 The quality factor is calculated by
_wfy wfy (G KGg|\ ™' (1 1)\t
Q=K e | o) Tles Tl
(36)
where
™ Copol
being the quality factor due to the dissipation associated with
the volume chande
_roll _ro 1 [’ﬂ'ICopo
QS_ KGS_ |_ R 2 ’ (38)
(30 which is the quality factor due to the dissipation associated

with the shear motion in tubé$.Since the viscosity coeffi-
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cients¢ and 5 are of the order of 10° andQs/Qg is of the  Lawrensonet al! The parameters of these resonators are
order of <1072, the overall quality factor can be ap- listed below.

proximated byQs, i.e., Cylinder (1=0.10m),r(x)=0.0222 m.
rol [mlcopo Cone (=0.17m), r(x)=0.0056+ 0.268%x m.
Q=Qs=7 CT (39 Horn-cone (=0.24m),

. . . . 0.0068 costR3.86«), 0=x=<0.06 m;
Equation(39) shows that the quality factor is proportional to r(x)=
ratio ro/I and /1. The quality factors are calculated, based 0.015+0.134%, 0.06<x<0.24 m.
on Eq.(39), for four resonators used in the experiment by Bulb (1=0.28 m),

0.007-0.15¢+4.1x>— 9.9x 10*x3 - 9x 10°x*, —0.00508 nE=x<0;

r(x)= { 1[0.025-0.15x/I)+ 1.15x/1)>=0.9x/1)*], = 0=x=<0.28 m.

The results are given in Table | for the resonators filled withence of the quality factors between the 2D and 3D resonators
refrigerant(R-1344a.2* The results obtained by llinskit al>  affects the pressure waves in the resonators.

are also listed in Table I, which are in a range for each

resonator depending on the excitation level. It can be seen

that most of quality factors are of order of 500, which wasB. Waveforms and compression ratios

the value measured in the experimérthe quality factors

precicted by the presen tudy are generally higher than the,, £% WECCRERERS B SUEC B I0 B0
values obtained by llinskiet al,® especially for the straight >~ ' & y . P y
Zinn.> For comparison purposes, all parameters of the gas

cylinder. This is probably due to the additional energy loss .
y P y 9y nside the resonators are assumed to have the same values as

associated with turbulence generated by the large-amplitu . . -
pressures in the shaped resonators or the shock waves in t ose psed by Enck;on qnd ZiiiThe coefficients of shear
straight cylinder. viscosity and bulk viscosity are of the same order, and for

For the 2D resonator shown in Fig(al, the radius ex- ?(Iarggrl:;![g/r’svﬁesg;::rilllearpe:joatt)e equal to E7005Pas. The
pansion function is

A=AqcoqT), (42

_ o _ and the amplitude is fixed a,=5x10 * throughout the
where « is the flare constant indicating the expansion rateca|culations. The cross sections of both resonators are ex-
The quality factors are computed for differemtand the re-  panded exponentially as

sults are presented in Fig. 2. The quality factor for the 3D X

resonator, shown in Fig.(l), can be obtained by simply S=Se™, (42)
replacingro /1 with h/I and setting< =1 in Eq.(39), which  where Sy=7r3/12 for the 2D resonator ang,=boh/I? for

is the same for a straight cylinder. The quality factors for thethe 3D resonator. The flare constadmt,is fixed ata=5.75 in

3D resonator and cylinder are also plotted in Fig. 2. It isthe following calculations because the compression ratio is

seen, from Fig. 2, that the 2D resonators have higher qualitthe maximum at this valudThe dimensionless velocity po-
factors than that of the 3D resonator and cylinder. This igential, ®, is expressed as

because the energy dissipation due to the shear viscosity is
reduced along the 2D resonators as the cross sections are
expanded, whereas the energy dissipation in the 3D resonator
is increased from the small end to the big end, as the height
h between the upper/lower walls is fixed and wall areas are
increased. Figure 2 also shows that the 2D resonators with
larger flare numbers have higher quality factors. The differ-

f(X) — eaX/2, (40)

1000

TABLE I. Quality factors of resonators filled with R-134a.

Results of Results of Measured
llinskii et al. (Ref. 3 present study  value(Ref. 1)

Cylinder 350-450 1047

(?.01 0.62 0.;)4 0.66 0.68 0.1
Horn- 200-600 740 500 A M
Bulb 400-900 574
Cone 745 FIG. 2. The quality factor versus,/l and h/l for the 2D-resonator, 3D

resonator, and a straight cylinder.
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— Present model (@) ry1=0.05,Q=1363
- - Erickson and Zinn® 3}

0
0 27 4T 6x
5

|y ryi=002,Q=1359

0 2% 4T 6T

PP,
(2]

5
©) ro/ =001, Q@ =1.357

3}
1 L/\_/\_/\
00 éﬂ: :t 6 0 s .
T " T 0 2m am 6T

T

FIG. 3. Pressure waveforms at the small end of the 2D resonStor.
=m(ro/1)2e?X, «=5.75. Dashed line: reproduced for the results by Erick-
son and Zinn(Ref. 5. Solid line: calculated from Eqg26) and (44), |
=0.2m,ry/1=0.023.

FIG. 4. Pressure waveforms at the small end of the 2D reson&tor.
=m(ro/)%e®, a=5.75,1=0.2m.(a) ro/1=0.05; (b) ry/I=0.02; and(c)
ro/l=0.01.

o section dimensions;y/l, due to the shear viscosity term.
DX, T)=> 7,(THV(X). (43)  The resonance pressure wa\_/eforms at the sm_all (_end of the
n=1 2D resonator are plotted for different valuesgfl in Fig. 4.

The trial functions,W,(X), have the same forms as those Whenro/l is 0.05, the pressure amplitudes are large with
used by Erickson and Zifirfor the resonators sealed at both SharP peaksFig. 4@)], indicating a strong resonance. When

ends. The time-dependent amplitudes(T), are solved by ro/l is reduced to 0.02, the pressure amplitudes are reduced,

the techniques suggested by Erickson and Zifmwhich @S Well as the sharp pealig. 4b)]. Whenr,/I is further

the series of Eq43) is truncated ah=20. Finally, the pres- reduced to 0.01Fig. 4(c)], the pressure amplitudes are re-
sures are calculated for the 2D resonator by duced further and there are no sharp peaks, indicating that

the resonance has been weakened due to the energy dissipa-

P tion. The resonance frequency changes slightly when the ra-

X tio ro/l varies, as denoted in the figure for each case. The
similar situation is also observed for the pressure waves in

Y(y=1) the 3D resonator, which are plotted in Fig. 5. In this case, the

1 , (49 waveforms have been smoothed downrgil=0.02, be-
cause the 3D resonator is more dissipative than the 2D reso-

and for the 3D resonator by nator, as shown by the quality factors in Fig. 3.

The compression ratios are calculated based on the

2
+AX

Qa@ 1
T2

Po

1—(y—1)w?

Gg 1l a( a@) GO YD

——=—|S—=<|+
22 S x| X R

acDZAX
x| "

Po

1 1 296¢+1
(y=Dm" Qo +3

(a) h/1=0.05, Q =1.360

yI(y=1) .
1 - Z/A\/\\//\\

In Egs.(44) and(45), Py is the static pressure in the resona- % 2n 4n 6m
tors. As a reference, the pressure waves obtained by Erickso
and zinn at the small end in the 2D resonator are repro-
duced here with the same condition by sett@g=0 and & 2f T
assigningGg=0.01 in Eg.(26), shown in Fig. 3 by the /\_/\/\
dashed lines. In their resultshe dashed ling the pressure % on e &N
waveforms were not dependent on the resonator dimensions 4
such as the resonator lendtland ratior,/l, because there

was no shear viscosity term in the wave equation. The solid 2f 1
lines in Fig. 3 are the pressure waves calculated in the |f——" ~——" —— ]
present study using Eq&6) and(44), in which Gg andGg % oY o -
are evaluated according to their definitions and gas param T

eters, the resonator IengthllsO.Zm, R:_roll =0.023. Itis FIG. 5. Pressure waveforms at the small end of the 3D reson&tor.
seen that two waveforms are very similar. In fact, the pres— boh/1%e?%, @=5.75,1=0.2 m. (a) h/l =0.05; (b) h/I=0.02; and(c) h/l
sure waveforms in the resonator are dependent on the crosse.o1.

Gg 1l a( acb) G5O YD

w3 SaX| T ax H

4 v
(b A =0.02,Q =1357

(©) k=001, Q=1.356
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=& 2D resonator /=0.2m
16 =&~ 2D resonator /=0.05m L 4.5}

=8 3D resonator /=0.2m
| ~4 3D resonator

14

12F

/P .
max  min

1.35 1.355 1.36 1.365 1.37

0 L N
0.005 0.01 0.1 Q
rf LAl

FIG. 8. Frequency response curves of the 2D resonator with different di-
FIG. 6. Compression ratios verstg/l andh/| for the 2D and 3D resona- mension ratios o /I. S=m(r,/1)%e**, @=5.75,1=0.2m.
tors. The cross-section area $s=(ro/1)%e®* for the 2D resonator, and

S=hb,/1%e* for the 3D resonatorg=5.75. L .
0 cies is not clear from the present modeling, and further study

is needed. The results presented in Fig. 6 suggest ghiat
maximum and minimum pressures from the waveforms, angy/|, andl are probably the control parameters to the resona-
the results for both 2D resonator and 3D resonator are preor dimensions for the given driving strength and required
sented in Fig. 6, versug/| for |=0.2 and 0.05 m, respec- compression ratio. The comparison between the 2D resonator
tively. It is seen that the compression ratios, fer0.2m,  and 3D resonator in Fig. 6 shows that the compression ratios
can be greater than 10 wheg/I is greater than 0.04 for the of the 3D resonator are always lower than that of 2D reso-
2D resonator andi/| is greater than 0.05 for the 3D resona- nator. If one takes=0.05m andh/I =0.05, i.e.,|=50 mm
tor, but drop to 2 or less whery/I andh/l are less than andh=2.5mm, which is a small resonator, one may expect
0.01, showing that the cross-section dimension of the resqp have pressure waves with a compression ratio of 3, ac-
nator has tremendous effect on the compression ratio. On thgyrding to the results in Fig. 6. On the other hand, the reso-
other hand, when the overall length of the resonator is renance may be easier to be excited in a smaller resonator than
duced, the compression ratio is also reduced, as shown i@ a bigger one for the same driving power. When the exci-
Fig. 6 by the results of=0.05m for both resonators. This is tation is doubled by settingdA,=1x10"% in the above-
because the shorter length will lead to a higher resonancgentioned small resonator, the calculation results show that
frequency, and therefore higher dissipation by the shear vigshe compression ratio is increased from 3 to 10.
cosity. It is seen from Fig. 6 that the compression ratio drops  The cross-section dimensions of the resonators are found
substantially atry/I=0.02 for the 2D resonator whenis  to have minor effect on the resonance frequencies, which are
reduced from 0.2 to 0.05 m, and increases quickly afterwardgrimarily determined by the resonator lengths and the axial-
A similar situation is also seen for the 3D resonator but alexpansion shape. The calculated results for both 2D and 3D
h/I =0.05. The mechanism associated with these inCOﬂSiStemesonatorS' p|0tted out in F|g 7, show that the variation of

the dimensionless frequendf?) is less than 1% when the

1.366 T ' cross-section dimensionsy/l andh/l) change from 0.1 to

0.005. However, the changes in the resonance frequency and

1364} dimension parameters produce tremendous difference in the
frequency response curves, which are illustrated in Fig. 8 by
plotting the maximum pressure versus the frequeQcfor

1362 the 2D resonator. The frequency response curves at different

2D resonator values of parametary/l in this case are very similar to the
G 1.36f hardening behaviors of a conical resonator under different

excitation levels. This resemblance indicates that the resona-

1358} 3D resonator | tor dimensions affect the dynamic energy of the system
through the shear viscosities.

1.356f
IV. CONCLUSIONS

Rary™ 0.01 o The effect of resonator dimensions on the nonlinear

(A standing waves inside the shaped resonators has been stud-

FIG. 7. Dimensionless resonance frequency versus cross-section dimensiol®d. A shear viscosity term has been added to the one-
for both 2D and 3D resonators with lengtk 0.2 m. dimensional momentum equation for the average axial veloc-
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ity, and the wave equation has been solved by the Galerkirfy. A. linskii, B. Lipkens, T. S. Lucas, T. W. Van Doren, and E. A. Zabo-
method for a 2D(axisymmetri() resonator and a 3|D|0W lotskaya, “Nonlinear standing waves in an acoustical resonator,” J.
aspect ratio rectangularesonator, whose cross sections are Acoust Soc. Am104 2664-26741998. _
exponentially expanded. By calculations of quality factors, Y. A. ||!nSkII, B. Lipkens, and E. A. Zabolotskaya, “Energy losses in an
. . L acoustical resonator,” J. Acoust. Soc. Air09, 1859-18702001).
the pressure waveforms, and compression ratios, it is found : o o
hat the shear viscosity dissipation plavs a crucial role when M. F. Hamilton, Y. A. llinskii, and E. A. Zabolotskaya, “Linear and non-
tha ’ y p play linear frequency shifts in acoustical resonator with varying cross section,”
the resonator sizes are reduced. The resonator léhgtmd J. Acoust. Soc. Am110, 109—119(2001.
the ratio of the cross-section dimension to the lengvI( SR. R. Erickson and B. T. Zinn, “Modeling of finite amplitude acoustic
andh/I in the present studyare two controlling parameters.  wave in closed cavities using the Galerkin method,” J. Acoust. Soc. Am.
If ro/l1 andh/I are greater than 0.04 for the present resona-6103 1863-1870(2003. o _
tors, the typical characteristics of shaped resonators, such ad- T- Nguyen and S. T. Werelefundamentals and Applications of Mi-
high-amplitude pressures and hardening behaviors, are opSrofluidics (Artech House, 2002 . .
served. Whem /1 andh/l are less than 0.01. the resonance M. Gad-et-Hak, “The fluid mechanics of microdevices—The Freeman
’ 0 . o Scholar Lecture,” J. Fluids End.21, 5-32(1999.
become_s Wfaak and the compression ratios drop tq 2 _and.baN. T. Nguyen and R. M. White, “Acoustic streaming in micromachined
low, indicating that the resonators are not functioning in fiexural plate wave devices: numerical simulation and experimental veri-
these cases to generate large-amplitude pressures, unless thieation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Cont4a(6), 1463—
excitation levels are increased. The results also show that thgel471(2000- _ _
dimension ratios control the frequency response curves in theD- J- Coe, M. G. Allen, M. A. Trautman, and A. Glezer, "Micromachined
same way as the excitation level does, following the harden- x;?kfs%roMagpullzt?:n:f m;‘g;"g‘:’;’j ;&';I;State Sensor and Actuator
ing behavior of the shaped resonators. Although the study ig P ’ ’ '

. L. D. Landau and E. M. LishitzFluid Mechanics(Pergamon, Oxford,
conducted based on only two specially shaped resonators, the gg,

results may be similar to other shaped resonators. M. Abramowitz and I. StegurHandbook of Mathematical Functions with
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