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A simple method for evaluating chaotic advection in slug micromixing is reported in this paper. We

consider a slug moving in a slit microchannel ðwbhÞ and flow field in a plane far from the boundary

walls is modelled as a two-dimensional low-Reynolds-number flow (Stokes flow). Analytical solution

for normalised velocity field in the slug is derived. The two-dimensional analytical solution is compared

with the two-dimensional slice from the three-dimensional numerical solution of the slug velocity field.

Boundary conditions mimicking the motion of the slugs in microchannel geometries, in Lagrangian

frame of reference, is used to track the passive tracer particles using Lagrangian particle tracking

method. Poincaré sections and dye advection patterns are used to analyse chaotic advection of passive

tracer particles using statistical concepts such as ‘variance’, ‘Shannon entrophy’ and ‘complete spatial

randomness’. Results for boundary conditions mimicking constant-velocity straight-channel flow,

constant-velocity normal-meandering channel flow are compared. A method for finding new channel

geometries which enhance chaotic mixing is also proposed.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In microscale, momentum, mass and energy transport experi-
ence laminar and Stokes flow conditions (i.e., low-Reynolds
number, Reo1) (Manz et al., 1990; Whitesides, 2006). Unavail-
ability of turbulent conditions make mixing dependent on the
diffusive properties of the species involved in the process
(Günther et al., 2004). In micro-total-analysis systems (m�TAS),
species involved in the analysis are macromolecules and biologi-
cal species with low mass diffusivities and hence have long
mixing time in laminar flow conditions. They are comprehen-
sively reviewed by Nguyen and Wu (2005), Hardt et al. (2005) and
Teh et al. (2008).

Droplet and gas–liquid segmented flow are the two kinds of
flow that have been investigated for passive micromixing of
liquids as they are known to mix the components rapidly by
internal recirculation (Song et al., 2003a, b; Bringer et al., 2004;
Garstecki et al., 2006a, b; Tanthapanichakoon et al., 2006; Günther
et al., 2004, 2005). Laminar flow conditions, which is prevalent in
continuous microchannel flows, can be observed in droplet
micromixing (Teh et al., 2008). In droplet flows, the liquid inside
the droplet generates two counter rotating vortices. In the case of
ll rights reserved.
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gas–liquid segmented flow, the liquid-slug between two gas
bubbles generates the counter rotating vortices in the Taylor flow
regime (Fries et al., 2008).

From the available literature (Aref, 1984, 2002; Stone et al.,
2004), it is well understood that chaotic advection can be
produced whenever the kinematic equations of motion for
passively advected particles give rise to a nonintegrable dynami-
cal system. Understanding the passive advection of particles in
the complex laminar flow is considered as a useful first step in
describing the mixing process in chaotic advection driven
microscale mixing. Channel modifications have been implemen-
ted to improve the chaotic advection by promoting internal
circulation of liquids in the vortices in droplets and slug. When a
droplet moves through a straight microchannel, recirculating flow
of equal size is generated in each half of the droplet (Handique
and Burns, 2001). Fluids within each half of the droplet are mixed,
but the two halves remain unmixed and separated from each
other.

To enhance internal mixing within droplets, modifications in
the channel geometry, by employing turns and bends, are used to
create chaotic advection to fold and stretch the content of the
droplet (Song et al., 2003b; Teh et al., 2008). As the droplet
traverses through a curved channel, the two halves of the droplet
experience unequal recirculating flows. One half of the droplet is
exposed to the inner arc of the winding channel, a shorter channel
section, and thus a small recirculating flow is generated compared
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to the other half of the droplet which is exposed to a longer
channel section. The irregular motion along the walls promoted
chaos and crossing of fluid streams since the vortices of each half
are assymetrical. The sharp turns also help to reorient the droplet,
so that it becomes thoroughly mixed as it goes through a series of
stretching, reorientation, and folding (Bringer et al., 2004).

Many of the studies in microfluidics literature are application-
driven experimental studies involving complex geometries with
no theory (Shui et al., 2008). Very few researchers have tried to
model the chaotic motion in slugs and droplets moving in
microfluidic channels. Experimental scaling of the chaotic mixing
in a droplet moving through a winding microfluidic channel has
been done using baker’s transformation (Song et al., 2003a).
However, the argument was too simple and does not provide the
optimization of the channel geometry for rapid mixing through
chaotic advection. A mathematical model to estimate the mixing
time for slugs in a straight slit microchannel was proposed
(Handique and Burns, 2001). Although the model did estimate the
time required for mixing, it did not provide any insight about
chaotic motion in the slugs. The mixing characteristics inside a
microfluidic slug using computational fluid dynamics was done
by Tanthapanichakoon et al. (2006), where each slug was
modelled as a single-phase flow domain in two-dimensional
(2D) as well as in three-dimensional (3D) domain. Boundary
conditions of the slug in Lagrangian frame of reference were used
to simulate the mixing characteristics. They reported that the
radially arranged reactants mix more rapidly than the axially
arranged reactants and proposed a new dimensionless number to
estimate mixing rates. However, they did not calculate chaotic
advection of the flow inside the slugs. Since droplets and slugs
produce similar vortices, similar inferences can be made from
their flow fields when moving in various microchannel geome-
tries and hence only the slug terminology will be used for
convenience hereafter.

In order to understand mixing in microfluidic slugs, we
propose a simple method to characterize the chaotic flow:
Analytical solution for the two-dimensional flow field is derived
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Fig. 1. 3D model of the slug in a slit microchannel simplified into 2D model with interna
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with wbh. (b) Vortices in the x–z planes far from the side boundary walls.
and the boundary conditions mimicking the flow of the slug in
microchannel are used to get the velocity at every point of the
flow domain. Velocity field obtained from the analytical model is
used to track the passive tracer particles and construct Poincaré
maps and dye advection pattern. To analyse the nature of chaotic
advection, traditional tools such as ‘variance’, ‘Shannon entrophy’
and ‘complete spatial randomness’ are used. Based on the 2D
model and the results obtained, a method to predict microchannel
geometries which can produce chaotic advection in liquid-slug
and droplet flows is proposed.
2. Problem description

Microchannel flows are similar to Stokes flow problems because
of the inherently laminar flow conditions. Gas–liquid segmented
flow (often called as slug flow) can be described by Stokes
equations, when the liquid-slug is considered as a single-phase
flow in Lagrangian frame of reference, which model viscous fluids
in macroscales and ordinary fluids in microscales. We consider the
case where a slug fully occupies the channel cross-section and its
cross-sectional shape is determined by that of the channel. The
microchannel is considered as infinitely large in one of the three
directions and therefore the flow in a plane far from the boundary
walls, in the direction, is two-dimensional. Fig. 1 shows the model
of a liquid-slug with moving wall boundary conditions in
Lagrangian frame of reference in a straight rectangular
microchannel. The continuous phase is assumed to wet the wall
well and no-slip condition is applied on the top and the bottom of
the slug. In the front and the rear, the slug is surrounded by an
immiscible phase with negligible viscosity such as air and therefore
no shear stress condition is assumed. Other assumptions made in
this analysis are: no body force has any influence on the slug; the
slug is approximately rectangular; the liquid in the slug is an
incompressible Newtonian fluid. Two-dimensional flow field
numerically simulated by Fluent (ANSYS, Inc., USA) is used to
compare the analytical results in the next section.
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3. Modelling

3.1. 2D analytical solution

Following the works of Shankar (2007) and Timoshenko
(1951), the governing equation for Stokes flow in the slug can
be simplified as a biharmonic equation. Using the finite Fourier
transform (FFT) method, the dimensionless velocities in the x and
z directions can be obtained as follows (for details see Appendix):

ûx ¼
@

@z
ĵðx̂,ẑÞ ¼

X1
n ¼ 1

sinðanx̂Þ

�½C1nansinhðanẑÞþC2nancoshðanẑÞþC3nanẑsinhðanẑÞ

þC3ncoshðanẑÞþC4nanẑcoshðanẑÞþC4nsinhðanẑÞ� ð1Þ

ûz ¼�
@

@x
ĵðx̂,ẑÞ ¼ �

X1
n ¼ 1

cosðanx̂Þ

�½C1ncoshðanẑÞþC2nsinhðanẑÞþC3nẑcoshðanẑÞþC4nẑsinhðanẑÞ�

ð2Þ

The constant coefficients are
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Fig. 2. 2D slices of 3D flow field in the
3.2. 3D numerical simulation

To verify the validity of the model described above, the
analytical flow field is compared with the numerically simulated
flow field using the commercial CFD software Fluent 6.3.26
(ANSYS, Inc., USA). The dimensions of the slug taken for the
simulation are 100� 200� 50mm in x, y and z directions,
respectively. Therefore, l:w:h of the slug is 2:4:1 and in x–z

directions, the 2D plane in consideration is of the ratio 2:1. The
front and rear end of the slug are assumed to be straight edges, as
the effect of the edge curvatures is small (Tanthapanichakoon
et al., 2006). Steady-state simulation condition was assumed. The
number of meshes used for the simulation was 64 000. The mesh
independence was confirmed. The density and viscosity were set
at 998.2 kg/m3 and 0.001 Pa s, respectively, as water is taken as
the operating fluid. Since the Reynolds number is very low in the
microfluidic slugs, the laminar flow model was used. The moving
wall boundary conditions for all the four walls were set at 5 mm/s
and for the front and the rear ends, no shear wall conditions were
applied. Convergence criteria for x, y and z velocity values were
set at 10�5. Slices of the three-dimensional numerical simulation
of the flow field inside the slug is shown in Fig. 2. The contour
slices are showing the flow field in the x–z planes from wall to
wall in the Y-axis.

3.3. Comparison

For comparing the analytical flow field with the numerically
computed flow field, we take the flow field at the middle plane,
which is far from the boundary walls. Therefore, numerical
velocity flow field from the plane in the y-axis at y¼0.0001 m
ð100mmÞ was taken for comparison.

Flow field for both analytical and numerical solution is shown
in Figs. 3(a) and (b), respectively. For the analytical velocity flow
field, the moving wall velocity boundary conditions on the top
(Utop) and the bottom (Ubottom) of the slug are both 5 mm/s and the
aspect ratio of the slug is 2, which are same as used for numerical
simulation. As seen in Figs. 3(a) and (b), both analytical and
numerical flow field contours and the velocity vectors are similar.
To make sure that they are of the same magnitude, velocity
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profiles at three different positions along x-axis are compared.
Velocity profile plots of analytical and numerical flow fields at 1

4, 1
2

and 3
4 positions of the slug are shown in Fig. 4. The continuous
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for the magnitude of the velocity in that particular position of the
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slug. As seen in Fig. 4, both analytical and numerical velocity
profiles are of the same magnitude with little variation in the
center. Therefore, the 2D simplification of the flow field for the
slug flow in slit microchannel is valid and can be used to analyse
the chaotic advection by tracking passive tracer particles in the
slug.
4. Particle tracking

In this study, we use passive massless tracers to construct the
particle trajectories in the flow domain using Lagrangian particle
tracking method. The velocity expression, _x ¼ vðx,tÞ is used for the
integration, where x is the position vector, v is the velocity, t is the
time, and the dot denotes a material derivative. Here, we use only
the analytically known Eulerian velocity field, therefore the
integration can be carried out by the standard fourth order
Runge–Kutta method. Boundary conditions used for finding the
analytical velocity field, which is used to track the particles in the
slugs, are discussed in the next section. The constant integration
time, Dt¼ 0:02 s, was found by running a few trials of computa-
tion for the range of boundary wall velocities used in this study.
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channel.
The choice of integration time Dt is dictated by (1) the accuracy of
tracing the particle along the streamline in a non-chaotic flow
field without moving out of it, i.e., the particle has to simply trace
the streamline pattern, (2) the highest among the values, to avoid
the need for huge computational resources.
4.1. Boundary conditions

Analytical velocity flow fields, for tracking passive tracer
particles, were found by using the boundary conditions which
mimic the kind of motion the slug undergoes in microchannels.
For straight microchannels, the slug experiences a constant
velocity on the walls in Lagrangian frame of reference. Therefore
a constant velocity of �5 mm/s was used in Eq. (1), along with the
constant coefficients for finding the velocity flow field. Though the
slug is moving in the positive x-direction, the velocity boundary
condition is negative because the frame of reference is moving
with the slug. For meandering microchannel, in the first half
period, the outer wall moves at a higher speed ðVR1

Þ and inner
wall moves at a lower speed ðVR2

Þ. In the second half, the wall
velocities reverse. Effect of change in the wall velocity reflects in
the size of the vortices formed in the slug as shown in Fig. 5(a).
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Boundary conditions for the slug moving in a straight channel and meandering
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Boundary conditions mimicking the motion of the slug through
the meandering channel and the straight channel for a single
period are shown in Fig. 5(b). The difference between the wall
velocities is dependent on the dimensions of the microchannel
such as radius, width and the angular velocity of the slug. The
outer radius, inner radius and width of the channel are 1000,
800 and 200mm, respectively. Angular velocity of the slug is
o¼ 1 rad=s. The inner and outer wall velocities were calculated
from the relation, VS ¼ ðVR1

þVR2
Þ=2, where VS is the straight

channel wall velocity.
5. Chaotic advection evaluation

5.1. Poincaré map

Poincaré map, a Lagrangian tool constructed by recording the
particle positions for long time, is used to evaluate the advective
transport of fluid particles. The disposition of the particle
positions in Poincaré map reveals the nature of the flow: chaotic
nature of the flow field appears as randomly distributed; non-
chaotic flow appears as islands or closed curves (Aref, 1984,
2002). Since we use massless tracer particles, when the flow is
steady, the particle trajectories correspond to stream lines and
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Fig. 6. Poincaré map for (a) slug flow in straight micro
hence no chaotic advection. Fig. 6(a) is the Poincaré map for
straight channel velocity boundary condition, which shows that
particles move in closed curves.

When the flow is unsteady and chaotic, stretching and folding
of fluid elements occur and produces an exponential growth of
the fluid interface and the particle positions are randomly
distributed. In this study, Poincaré sections are obtained by
following the motion of 20 material points, which are put in a
group at the location (1.4,0.4) in a slug for the aspect ratio of 2, for
the duration of 2000 periods. An impression of the poincaré
sections that have been found for the straight microchannel and
the meandering microchannel can been seen in Figs. 6(a) and (b),
respectively.

5.2. Construction of dye advection pattern maps

Advection pattern of massless passive tracers are obtained by
tracking the positions of 20,000 material points which are initially
concentrated in a rectangular box of size 0.05 �0.05 centered at
the point (1.45, 0.45). Blue and red colour particles are used to
distinguish the upper and lower half particles in the rectangular
box similar to the work by Kang and Kwon (2004) and it is useful
to visually identify the globally chaotic flow. In this study, 40
periods of meandering channel boundary conditions with 630
X
21

X
21

channel and (b) slug flow in meandering channel.



S. Jayaprakash et al. / Chemical Engineering Science 65 (2010) 5382–53915388
iterations per period are used to track the particles in the slug.
Particle positions were recorded at the end of each period of
tracking to see the particle advection patterns. Figs. 7(a–f) show
the dye advection patterns for the slug of aspect ratio 2 for periods
from 1 to 40 with interval of 8 periods.
6. Results and discussion

6.1. Characterization of chaotic mixing

To calculate the mixing efficiency, we use the popular tools
such as ‘variance index (Ivar)’, ‘Shannon entrophy index (IS)’ and
‘complete spatial randomness (CSR)’. Variance as a mixing
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Fig. 7. (a–f) Dye advection pattern for the slug aspect r
measure has been widely used to characterize the chaotic mixing
along with Shannon entrophy index (Phelps and TuckerIII, 2006).
Variance of the particle counts in the bins is calculated by dividing
the whole flow domain into n�m grid of equal-size bins. The
variance s2 is calculated as

s2 ¼
1

M

XM
j ¼ 1

ðcj�cÞ2 ð8Þ

where M is the number of bins and cj is the number of particles in
bin j, c is the average number of particles per bin, c ¼N=M, with N

the total number of particles in the calculation. The variance
decreases with the number of periods as mixing improves, and
particles are distributed in the computational domain. Variance
index, which varies from unity to zero and allows easy
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comparison of mixing calculations, is defined as

Ivar ¼
s2

s2
0

ð9Þ

where s2
0 denotes the most segregated state which can be

deduced from Eq. (8) as s2
0 �N2=M, when Mb1. Shannon

entrophy, S, another measure used to analyse chaotic mixing
widely, is defined as

S¼�
XM
j ¼ 1

pj ln pj ð10Þ

where pj is the probability that a particle will lie in bin j. With
Lagrangian particle method, the probability is taken as the
particle count in a bin divided by the total number of particles,
or pj ¼ cj=N. Shannon entrophy index IS is defined as

IS ¼ 1�
S

Se
ð11Þ

where Se is the condition of even distribution of particles and each
bin has an equal probability 1/M and the corresponding entrophy
is Se¼ ln M. This form of the normalization makes it easy to see the
details as a mixture approaches uniformity, by plotting IS on a
logarithmic scale.

Complete spatial randomness (CSR), which is the even
distribution of material points through out the flow domain, is
taken as the measure of complete mixing. This is an ideal state for
a physical mixture. However, in Lagrangian particle tracking
method, repeated iterations of a globally chaotic flow do not
result in an even distribution of the particles, but rather one in
which each particle is equally likely to lie in any bin.

According to the binomial probability mass function (PMF) of
the bin counts, for Mb1 and Nb1 the binomial PMF asymptotes
to the Poisson PMF,

pðcÞ ¼
N

M

� �c eN=M

c!
ð12Þ

with a variance of s2
CSR ¼N=M and this gives the CSR limit for

variance index Ivar,CSR¼1/N and for the entrophy index the limit is
IS,CSR¼M/2N ln(M). Once a random distribution of particles
throughout the flow is achieved, the limiting values of variance
and Shannon entrophy index are reached. CSR is a fundamental
numerical limit for any Lagrangian particle calculation and no
further distribution of particle can be attained. Details of the
above discussion on (Ivar), (IS) and CSR is referred to the work by
Phelps and TuckerIII (2006).

As seen in Fig. 6(a), Poincaré map constructed for straight
channel shows that the particles in the slug move along with
streamlines. This is because of the velocity flow field for constant
wall velocity boundary on the slug that produces two vortices
with symmetrical recirculation along the channel centerline. In a
simple non-chaotic recirculating flow field, particles can move
from one half to the other can happen only through diffusion. And
the particles used for particle tracking in this study are passive
massless tracers with zero diffusivity and therefore they simply
follow the flow field.

Poincaré map for meandering channel flow is seen in Fig. 6(b)
and the particles are evenly distributed throughout the domain.
Using the traditional approach of visually analyzing Poincaré
sections shows that there are no islands and can be classified as
globally chaotic flow. Total number of particles in the Poincaré
map is 40,000 which exceeds the requirement of sufficient
number particle positions, n4MlnðMÞ ¼ 5348, for evaluating
Poincaré maps, (Phelps and TuckerIII, 2006), where the number
of bins M¼800. Fig. 8 shows the ’variance index’ and ’Shannon
entrophy index’ for the dye advection patterns, as seen in Fig. 7,
computed for the slug from velocity flow field obtained for the
meandering channel flow. Both mixing measures show that the
mixing is complete and approach the state of ’complete spatial
randomness’. Therefore, it is clear that the meandering channel
geometry is useful in chaotic mixing due to its ability to create
assymetrical vortices.
6.2. Predicting a channel geometry for chaotic mixing

As described above in Section 4.1, wall velocity boundary
conditions applied on the walls of the slug is determined by the
channel geometry in which the slug is moving as seen in Fig. 5.
Therefore, the two-dimensional model in Section 3 can be used
along with the boundary conditions for a particular channel
geometry to identify the channel geometry which enhances
chaotic mixing in the slug, by tracking particles in the velocity
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flow field as described in this work. As slugs and droplets produce
similar kind of vortex phenomenon, this method can be used for
droplets as well. Interesting results have been arrived by applying
different boundary conditions and will be reported elsewhere.
7. Conclusions

We have proposed a simple 2D analytical model for evaluating
and predicting chaotic advection in slug flow in high aspect ratio
microchannels. The velocity flow field of the 2D analytical
equations was validated against a 2D slice of the 3D numerical
velocity flow field and it showed that the 2D model is good
enough to represent the flow field in the center of the droplet and
slugs flowing in high aspect ratio channels. Boundary conditions
mimicking the motion of the slugs in straight channel and
meandering channels have been applied to get the velocity flow
fields in the slugs.

Lagrangian particle tracking has been used to compute
Poincaré maps and dye advection patterns of passive tracer
particles. Poincaré maps and dye advection patterns were
analysed using the statistical tools such as ‘variance index’,
‘Shannon entrophy index’ and ‘complete spatial randomness’. The
analysis shows that the slug flow in high aspect ratio meandering
channel flow could produce chaotic advection because of the
change in the size of the vortices due to the curvature of the
channel. A method of applying corresponding boundary condi-
tions for a channel geometry has been proposed, to find a new
channel goemetries and motion of the slugs and droplets, which
could produce chaotic advection.
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Appendix A

For the Stokes flow in the slug, the governing equation is
biharmonic

r
4j¼ 0 ðA:1Þ

where j is the stream function, which is defined as

ux ¼
@j
@z
; uz ¼�

@j
@x

ðA:2Þ

This definition of j satisfies the continuity equation automati-
cally. The stream function is constant on the boundaries. Here, we
set it to be zero.

jð0,zÞ ¼ 0; jðL,zÞ ¼ 0; jðx,0Þ ¼ 0; jðx,hÞ ¼ 0 ðA:3Þ

The two ends of the slug are considered as free surfaces, because
the viscous of the air is neglected. The boundary conditions at
these two ends are, respectively,

@2

@x2
jð0,zÞ ¼ 0;

@2

@z2
jðL,zÞ ¼ 0 ðA:4Þ
The velocities at the outer and the inner sides walls are �Su and
�S respectively

@

@z
jðx,0Þ ¼�Su;

@

@z
jðx,hÞ ¼ �S ðA:5Þ

A.1. Nondimensionalization

Using the height of the channel h and the velocity of the wall Vs

to nondimensionalize x,z,j

x̂ � x=h; ẑ � z=h; ûx � ux=Vs; ûz � uz=Vs; ĵz �j=ðhV sÞ

ðA:6Þ

The dimensionless governing equation is

@4

@x̂
4
þ2

@4

@x̂
2
@ẑ

2
þ
@4

@ẑ
4

� �
ĵ ¼ 0 ðA:7Þ

and the dimensionless boundary conditions are, respectively,

ĵð0,ẑÞ ¼ 0; ĵðb,ẑÞ ¼ 0 ðA:8Þ

ĵðx̂,0Þ ¼ 0; ĵðx̂,1Þ ¼ 0;
@2

@x̂
2
ĵð0,ẑÞ ¼ 0;

@2

@x̂
2
ĵðb,ẑÞ ¼ 0 ðA:9Þ

@

@ẑ
ĵðx̂,0Þ ¼ �Z; @

@ẑ
ĵðx̂,1Þ ¼�x ðA:10Þ

where b� L=h is the aspect ratio; Z� Su=Vs and x� S=Vs are
dimensionless velocities at the walls of the channel.

A.2. Analytical solution

Using the finite Fourier transform (FFT) method, the solution of
the biharmonic equation can be written as

ĵðx̂,ẑÞ ¼
X1
n ¼ 0

½jnðẑÞsinðanx̂ÞþcnðẑÞcosðanx̂Þ� ðA:11Þ

which is the Fourier transform of ĵðx̂,ẑÞ, where an ¼ np=b.
According to the boundary conditions (A.9), the solution can be
written in a simpler format

ĵðx̂,ẑÞ ¼
X1
n ¼ 1

jnðẑÞsinðanx̂Þ ðA:12Þ

Using the FFT method, the dimensionless stream function j
can be determined as

ĵðx̂,ẑÞ ¼
X1
n ¼ 1

sinðanx̂Þ

�ðC1ncoshðanẑÞþC2nsinhðanẑÞ

þC3nẑcoshðanẑÞþC4nẑsinhðanẑÞÞ ðA:13Þ

Therefore, the dimensionless velocity components in the x̂ and ẑ

directions are, respectively,

ûx ¼
@

@z
ĵðx̂,ẑÞ ¼

X1
n ¼ 1

sinðanx̂Þ

�½C1nansinhðanẑÞþC2nancoshðanẑÞþC3nanẑsinhðanẑÞ

þC3ncoshðanẑÞþC4nanẑcoshðanẑÞþC4nsinhðanẑÞ� ðA:14Þ

ûz ¼�
@

@x
ĵðx̂,ẑÞ ¼�

X1
n ¼ 1

cosðanx̂Þ

�ðC1ncoshðanẑÞþC2nsinhðanẑÞ

þC3nẑcoshðanẑÞþC4nẑsinhðanẑÞÞ ðA:15Þ
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The constant coefficients can be determined from the bound-
ary conditions Eqs. (A.8) and (A.10),
C1n ¼ 0 ðA:16Þ

C2n ¼�
4x

Dnban
sinhðanÞþ

4Z
Dnb
½sinh2

ðanÞ�cosh2
ðanÞ� ðA:17Þ

C3n ¼
4x

Dnb
sinhðanÞþ

4Zsinh2
ðanÞ

banDn
ðA:18Þ

C4n ¼
4x

Dnban
½�ancoshðanÞþsinhðanÞ�

þ
4x

Dnban
½�sinhðanÞcoshðanÞ�ansinh2

ðanÞþancosh2
ðanÞ�

ðA:19Þ

where

Dn ¼ a2
ncosh2

ðanÞ�ða2
nþ1Þsinh2

ðanÞ ðA:20Þ
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