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a b s t r a c t

Droplet-based microfluidics has wide applications and triggers numerous researchers’ interest. It is
significant to study the flow field inside a droplet moving in microchannels. This paper presents an ana-
lytical method to investigate the flow field inside a confined droplet (a plug) moving in curved micro-
channels with high aspect ratio. The flow field is compared against a one-dimensional solution and the
published experimental data. The effects of the plug length and the curvature on the flow pattern and
the flow resistance are studied. The results suggest that the vortex pattern of the plug can be controlled
by designing the channel geometry.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Droplet-based microfluidics offers promising opportunities in
life science, chemistry, and biomedical science. It can be used for
drug delivery, point of care diagnostics, microreactors, organic syn-
thesis, gene-expression analysis, drug screening, etc. Being differ-
ent from continuous microfluidics, droplet-based microfluidics
manipulates fluids in a discrete manner [1]. This feature offers
the ability to actuate and manipulate droplets precisely and indi-
vidually. Compared to continuous flow microfluidics, droplet-
based microfluidics has the advantages of less sample requirement,
minimized cross-contamination and scalability. Droplet-based
microfluidic devices can even offer logic functions [2,3]. Droplets
can be actuated and manipulated by pressure [4], thermocapillar-
ity [5–7], electrowetting [8,9] , magnetic forces [10], optically
induced forces [11], surface acoustic wave [12,13] and others. For
further information on droplet-based microfluidics, reader can
refer to a review by Teh et al. [1].

Knowing the flow field inside droplets is important to under-
stand the flow phenomena paving the way for related applications.
Different methods are utilized to study the flow field inside drop-
lets. For experiment, micro particle image velocimetry (lPIV) can
offer the flow details in droplets [14–19]. Dye is also used to show
the flow patterns inside droplets [20,21]. As for computational
methods, according to whether predicting the droplet shape, two
types of methods are widely used. The first type is to assume the
interface shape, such as flat interfaces [22] or even assume the
ll rights reserved.

.

interfaces as static walls with non-slip boundary conditions
[19,23,24]. Most of the numerical simulations through this
approach were carried out in two-dimensional (2D) mode. Compu-
tation time was saved without predicting the interface shape, and
reasonable results were obtained. However, the static wall condi-
tion is not easily satisfied especially when the fluid of the adjacent
plug has large shear effect at the interface. The other type of com-
putational method needs to use the interface predicting technique
such as front-tracking [25], volume-of-fluid [26,27], level-set [28],
moving-grid [29] and etc. These approaches are usually complex
and computation-time consuming. This is not favourable especially
for applications in which additional processes need to analyze,
such as chaos analysis in mixing process [30–32]. On the contrary,
with an explicit fully analytical model, analysis is much more con-
venient as it can be performed directly on the known flow fields.
For analytical methods for droplet flow, Handique and Burns [33]
assumed that the flow in the droplet is fully developed one-
dimensional (1D) flow. This parabolic velocity profile is valid only
when the plug is long. Another analytical model available related
to the droplet flow in microchannels, to our best knowledge, needs
to assume that the channel width is much larger than the dimen-
sion of the droplet [34,35]. Therefore, this method is not practical
for the case of a confined droplet, or a plug, which refers to droplets
contacting the wall of the channel. This happens when the droplet
is sufficiently large. When the wall of the microchannel is hydro-
philic, plugs exist even if the droplet is relatively short [29].

In this paper, we present a 2D analytical model to investigate
the flow pattern inside a liquid plug moving in a curved micro-
channel. This proposed method for curved channel is a more gen-
eral case than that of the 1D model in a straight channel. In the
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Nomenclature

C constant coefficient (–)
Cf plug resistance coefficient (–)
f Moody friction factor (–)
L length of the plug (m)
M moment of force (N m)
P pressure (Pa)
r radial coordinate in polar coordinate system (m)
R diameter of the curved microchannel (m)
Re Reynolds number (–)
u velocity (m/s)
V peripheral speed (m/s)
w width of the microchannel (m)
x radial position of the vortex centre (–)

Greek symbols
a eigenvalues (–)
h angular coordinate in polar coordinate system (rad)
l dynamic viscosity of fluid (Pa s)
r surface tension (N/m)
s stress (Pa)
u stream function (m2/s)

x angular velocity of the plug moving in the curved micro-
channel (rad/s)

Subscripts
avg average
adv advancing end of the plug
A inner vortex in the plug
B outer vortex in the plug
rec receding end of the plug
max maximum of stream function
min minimum of stream function
1 outer wall of the curved microchannel
2 inner wall of the curved microchannel

Superscript
^ dimensionless variables (–)

Abbreviations
1D one-dimensional
2D two-dimensional
FFT finite Fourier transform
lPIV micro particle image velocimetry
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next section, we describe the flow governed by a biharmonic equa-
tion together with its boundary conditions. Next, the equation is
solved in dimensionless form using Finite Fourier Transform
(FFT) method [36]. The result is compared against a 1D solution
and the published experimental data from lPIV [14]. Then we
present the result of the analytical solution and analyze the effects
of the plug length and the channel curvature on the flow pattern.
Before we conclude, the resistance of the plug flow is analyzed.
2. Analytical model

2.1. Problem description and assumptions

Fig. 1 shows the model of a liquid plug moving in a curved
microchannel. The shaded area is the liquid plug of interest. The
surrounding area is an immiscible phase such as air. The two ends
of the liquid plug are assumed to be flat. The radii of the outer and
inner walls of the channel are R1 and R2, respectively. Therefore,
the width of the channel is w = R1 � R2. The plug length, L, is mea-
sured along the centre line of the channel. The plug is moving in
the anticlockwise direction with an angular velocity x, around
the centre point of the curved channel O.
Fig. 1. Schematic of the flow in a curved microchannel.
A polar coordinate is built with the origin at the centre O of the
curved channel, as shown in Fig. 1. The plug takes the region from
h1 to h2. The middle cross section of the plug is indicated by X–X at
h = (h1 + h1)/2. In order to simplify the equations, the coordinate
system is rotating with an angular velocity x. In this way, the li-
quid plug is stationary relative to the rotating frame of reference,
while the outer and inner walls of the channel are at peripheral
speeds of VR1 and VR2, and in the clockwise direction, where
VR1 = xR1 and VR2 = xR2. As the velocity of the liquid plug is small,
the centripetal acceleration, due to the non-inertial frame of refer-
ence, can be neglected in the momentum equation.

In our analysis, the following assumptions are made:

(1) Stokes flow with low Reynolds number exists inside the
plug. The transient term and the convection term are
neglected in the momentum equation.

(2) No body force is considered. The gravity is neglected and
there is no other body force for the liquid plug.

(3) The interface is flat and is vertical to the wall of the channel.
(4) The microchannel has a high aspect ratio (height/width),

hence the flow can be regarded as 2D.
(5) The liquid plug does not slip on the wall of the channel.
(6) The viscosity of the adjacent immiscible phase is negligible,

and there is no sheer stress on the free surface of the plug.
(7) The liquid is an incompressible Newtonian fluid.

2.2. Governing equation and boundary conditions

For the Stokes flow in the plug, the governing equation is
biharmonic

r4u ¼ 0 ð1Þ

where u is the stream function, which is defined as

ur ¼
1
r
@u
@h

ð2Þ

uh ¼ �
@u
@r

ð3Þ



Z. Che et al. / International Journal of Heat and Mass Transfer 53 (2010) 1977–1985 1979
This definition of u satisfies the continuity equation automatically.
This biharmonic equation is usually used to describe Stokes flow
[37,38] and elastic mechanical problems [39]. In polar coordinate
system, the biharmonic operator r4 is

r4 ¼ @2

@r2 þ
1
r
@

@r
þ 1

r2

@2

@h2

 !
@2

@r2 þ
1
r
@

@r
þ 1

r2

@2

@h2

 !
ð4Þ

The stream function is constant on the boundaries. Here, we set it to
be zero.

uðR1; hÞ ¼ uðR2; hÞ ¼ uðr; h1Þ ¼ uðr; h2Þ ¼ 0 ð5Þ

The two ends of the plug are considered as free surfaces, because
the viscosity of the air is negligible. The boundary conditions at
these two ends are respectively

1
r
@

@h
uhðr; h1Þ ¼

1
r2

@2

@h2 uðr; h1Þ ¼ 0;
1
r
@

@h
uhðr; h2Þ

¼ 1
r2

@2

@h2 uðr; h2Þ ¼ 0 ð6Þ

The speeds at the outer and the inner walls are VR1 and VR2 in the
clockwise direction relative to the rotating frame of reference.

� @

@r
uðR1; hÞ ¼ �VR1 ð7Þ

� @

@r
uðR2; hÞ ¼ �VR2 ð8Þ
2.3. Nondimensionlization

Introducing the following dimensionless parameters,

r̂ ¼ r
R1
; ĥ ¼ h� h1

h2 � h1
¼ h� h1

Dh
; ûh ¼

uh

VR1
; û ¼ u

VR1R1
;

ûr ¼
urðh2 � h1Þ

VR1
¼ ur

Dh
VR1

ð9Þ

The dimensionless governing equation is

@2

@r̂2 þ
1
r̂
@

@r̂
þ 1

r̂2

1
Dh2

@2

@ĥ2

 !2

û ¼ 0 ð10Þ

The radius ratio between the inner wall of the channel to the outer
wall is defined as

bR2 ¼ R2=R1 ð11Þ

The dimensionless plug length is defined as

bL ¼ L=ðR1 � R2Þ ð12Þ

The dimensionless boundary conditions are

ûð1; ĥÞ ¼ ûðbR2; ĥÞ ¼ 0 ð13Þ
ûðr̂;0Þ ¼ ûðr̂;1Þ ¼ 0 ð14Þ
@2

@ĥ2
ûðr̂;0Þ ¼ @2

@ĥ2
ûðr̂;1Þ ¼ 0 ð15Þ

@

@r̂
ûð1; ĥÞ ¼ 1 ð16Þ

@

@r̂
ûðbR2; ĥÞ ¼ bR2 ð17Þ
2.4. Analytical solution

The biharmonic equation Eq. (10) and its boundary conditions
can be solved using FFT method. Its solution can be written as
ûðr̂; ĥÞ ¼
X1
n¼0

½/nðr̂Þ sinðnpĥÞ þ wnðr̂Þ cosðnpĥÞ� ð18Þ

which is the Fourier expansion of ûðr̂; ĥÞ. According to the homog-
enous boundary conditions Eqs. (14) and (15), we can write the
solution in a simpler form

ûðr̂; ĥÞ ¼
X1
n¼1

½/nðr̂Þ sinðnpĥÞ� ð19Þ

This format of solution Eq. (19) satisfies the boundary conditions
Eqs. (14) and (15) automatically. Function /nðr̂Þ can be solved
according to the other four boundary conditions Eqs. (13), (16),
and (17). Using FFT method, the stream function can be determined
as

ûðr̂; ĥÞ ¼
X1
n¼1
an–1

sinðnpĥÞ C1n

r̂an
þ C2nr̂an þ C3nr̂anþ2 þ C4n

r̂an�2

� �

þ
X1
n¼1
an¼1

sinðnpĥÞ C 01n

r̂
þ C02nr̂ þ C 03nr̂3 þ C 04nr̂ lnðr̂Þ

� �
ð20Þ

where an = np/Dh. The dimensionless velocity components in r
direction and in h direction are respectively

ûrðr̂; ĥÞ ¼
X1
n¼1
an–1

np cosðnpĥÞ C1n

r̂an þ 1
þ C2nr̂an�1 þ C3nr̂anþ1 þ C4n

r̂an�1

� �

þ
X1
n¼1
an¼1

np cosðnpĥÞ C 01n

r̂2 þ C02n þ C 03nr̂2 þ C 04n lnðr̂Þ
� �

ð21Þ

ûhðr̂; ĥÞ ¼ �
X1
n¼1
an–1

sinðnpĥÞ �anC1n

r̂anþ1 þ anC2nr̂an�1 þ C3nðan þ 2Þr̂anþ1
�

þC4nð2� anÞr̂1�an
�
�
X1
n¼1
an¼1

sinðnpĥÞ

� �C 01n

r̂2 þ C 02n þ 3C 03nr̂2 þ C 04nðlnðr̂Þ þ 1Þ
� �

ð22Þ

The constant coefficients in these equations can be obtained from
the boundary conditions. For an – 1

Dn ¼
1� ð�1Þn

np
bR2

2 � a2
n
bR2an

2 þ ð2a2
n � 2ÞbR2þ2an

2 � a2
n
bR4þ2an

2 þ bR2þ4an
2

h i
ð23Þ

C1n ¼ Dn �bR4þan
2 þ ð1� anÞbR2þ2an

2 þ an
bR4þ2an

2 þ an
bR2þ3an

2

h
þð1� anÞbR4þ3an

2 � bR2þ4an
2

i
ð24Þ

C2n ¼ Dn �bR2
2 � an

bR2þan
2 þ ð1þ anÞbR4þan

2 þ ð1þ anÞbR2þ2an
2

h
�an

bR4þ2an
2 � bR4þ3an

2

i
ð25Þ

C3n ¼Dn
bR2

2�an
bR2an

2 þð�1þanÞbR2þan
2 �an

bR4þan
2 þð�1þanÞbR2þ2an

2

h
þbR2þ3an

2

i
ð26Þ

C4n ¼ Dn an
bR2an

2 þ bR2þan
2 þ ð�1� anÞbR2þ2an

2 þ ð�1� anÞbR2þ3an
2

h
þan

bR4þ3an
2 þ bR2þ4an

2

i
ð27Þ

and for an = 1
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D0n ¼
1� ð�1Þn

2npð1þ bR2Þ½1� bR2
2 þ lnðbR2Þ þ bR2

2 lnðbR2Þ�
ð28Þ

C01n ¼ D0nbR2
2 1� bR2

2 � 2bR2 lnðbR2Þ
h i

ð29Þ

C02n ¼ D0n �1þ bR4
2 þ ð�1� bR2 � bR2

2 þ bR3
2Þ2 lnðbR2Þ

h i
ð30Þ

C03n ¼ D0n 1� bR2
2 þ ð1þ bR2 þ bR2

2Þ2 lnðbR2Þ
h i

ð31Þ

C04n ¼ D0n �2ð�1þ bR2Þð1þ bR2Þ3
h i

ð32Þ

The absolute dimensional velocity field of the liquid plug is

u0h ¼ VR1ûh þxr ¼ VR1ûh þ
r

R1
VR1 ð33Þ

u0r ¼
VR1ûr

Dh
ð34Þ
2.5. Resistance of the liquid plug

The moment of force balance diagram for the liquid plug is
shown in Fig. 2. These forces are in moment balance for the low
Reynolds number. The moment can be derived by integrating the
shear stress along the wall of the channel. For unit depth of the
channel, the moment of shear force that the inner wall applies to
the liquid is

Mf 2 ¼ �
Z h2

h1

srhr2dh

����
r¼R2

¼ �lDhR1VR1

X1
n¼1
an–1

ð�1Þn � 1
np

ðbR2Þ þ
X1
n¼1
an¼1

ð�1Þn � 1
np

QðbR2Þ

2664
3775
ð35Þ

where

Pðr̂Þ ¼ anðan þ 2Þr̂�an C1n þ anðan � 2Þr̂an C2n þ ðan

þ 2Þanr̂anþ2C3n þ ðan � 2Þanr̂�anþ2C4n ð36Þ

Qðr̂Þ ¼ 3r̂�1C 01n � r̂C 02n þ 3r̂3C03n � r̂ lnðr̂ÞC 04n ð37Þ

The moment of shear force caused by the outer wall is
Fig. 2. Force balance diagram of the liquid plug.
Mf 1 ¼ lDhR1VR1

X1
n¼1
an–1

ð�1Þn � 1
np

Pð1Þ þ
X1
n¼1
an¼1

ð�1Þn � 1
np

Qð1Þ

2664
3775 ð38Þ

Although we assume flat interfaces (assumption 3 in Section 2.1) in
the 2D model, the effect of surface tension and contact angle hyster-
esis on the dynamics of the plug can be included in the moment of
force balance. The surface tension and the contact angle influence
the plug speed, while the plug speed influences the flow field in
the plug. In this way, the effect of the surface tension and contact
angle on the flow field of the plug can be considered indirectly
through the plug speed. The moments of surface tension force at
the advancing and receding ends are respectively

Madv ¼ radvðR1 þ R2Þ cosðhadvÞ ð39Þ
Mrec ¼ rrecðR1 þ R2Þ cosðhrecÞ ð40Þ

where hadv and hrec are the advancing and receding contact angles,
and radv and rrec denote the surface tension at the advancing and
receding ends, respectively. The moment balance equation isZ Ro

Ri

Dprdr ¼ Mf 1 þMf 2 þMrec �Madv ð41Þ

where Dp = prec � padv is the pressure drop from the receding end to
the advancing end of the plug. This leads to the driving pressure

Dp ¼ 2lDhR1VR1

ðR2
1 � R2

2Þ
X1
n¼1
an–1

ð�1Þn � 1
np

½Pð1Þ � PðbR2Þ� þ
X1
n¼1
an¼1

ð�1Þn � 1
np

8>><>>:
�½Qð1Þ � QðbR2Þ�

o
þ 2½rrec cosðhrecÞ � radv cosðhadvÞ�

R1 � R2
ð42Þ

In Eq. (42), the first term is caused by the friction, and the second
term is caused by the surface tension and contact angles.

To actuate the plug, we can use pressure to overcome the fric-
tion and the surface tension. But for different channel geometries,
plug speeds and fluid properties, the driving pressure cannot be
compared directly. Here, we used a dimensionless parameter, the
plug resistance coefficient Cf, to characterize the flow resistance
caused by a single plug. The plug resistance coefficient Cf is the
product of the Moody friction factor f and the Reynolds number
Re. The characteristic velocity is the average speed of the plug
along the centre line of the channel Vavg = x(R1 + R2)/2, and the
characteristic length is the width of the channel, (R1 � R2). There-
fore, the Reynolds number and the Moody friction factor are
respectively

f ¼ 4DpðR1 � R2Þ
DhðR1 þ R2ÞqV2

avg

ð43Þ

Re ¼ qVavgðR1 � R2Þ
l ð44Þ

Hence the plug resistance coefficient is given by

Cf ¼ fRe ¼ 8R1ðR1 � R2Þ
ðR1 þ R2Þ2

X1
n¼1
an–1

ð�1Þn � 1
np

½Pð1Þ � PðbR2Þ�

8>><>>:
þ
X1
n¼1
an¼1

ð�1Þn � 1
np

½Qð1Þ � QðbR2Þ�

9>>=>>;
þ 8ðR1 � R2Þ½rrec cosðhrecÞ � radv cosðhadvÞ�

lDhðR1 þ R2ÞVavg
ð45Þ
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2.6. Validation by 1D model

Assuming that the liquid plug is infinitely long (bL !1), we can
neglect the velocity component in the r and z directions.

ur ¼ uz ¼ 0 ð46Þ

Then the momentum equation for the Stokes flow in the curved
channel is

d2uh;1D

dr2 þ 1
r

duh;1D

dr
� 1

r2 uh;1D ¼
1
lr

dp
dh

ð47Þ

The boundary condition is

uh;1DðR1Þ ¼ uh;1DðR2Þ ¼ 0 ð48Þ

The solution of this 1D model is

uh;1DðrÞ ¼
1

2l
dp
dh

� �R2
1 ln R1 � R2

2 ln R2

R2
1 � R2

2

r þ ðln R1 � ln R2ÞR2
1R2

2

R2
1 � R2

2

1
r
þ r ln r

" #
ð49Þ

The average velocity is

Vavg;1D¼
1

R1�R2

Z R1

R2

uh;1DðrÞdr

¼� 1
2l

dp
dh

�ðR
2
1�R2

2þ2R1R2ðlnR1� lnR2ÞÞ½R2
1�R2

2�2R1R2ðlnR1� lnR2Þ�
4ðR1�R2Þ2ðR1þR2Þ

ð50Þ

According to Eq. (33), the dimensionless relative velocity can be ob-
tained after some rearrangement,

ûh;1D ¼
uh;1D

VR1
� r

R1
¼ uh;1D

Vavg;1D

ðR1 þ R2Þ
2R1

� r
R1
¼ �r̂ þ 2ð1� bR2

2Þ
ð1� bR2

2Þ
2 � 4bR2

2ln2ðbR2Þ

� bR2
2 lnðbR2Þ

1
r̂
þ ðbR2

2 � 1Þr̂ lnðr̂Þ � bR2
2 ln bR2r̂

� �
ð51Þ

where the dimensionless variables r̂ and bR2 are used.
If the length of the liquid plug tends to infinity (bL !1), the

flow can be simplified to 1D. For the dimensionless plug lengthsbL ¼ 100, the 2D solution for different radius ratios at cross section
X–X of the plug reduces to the 1D solution, as shown in Fig. 3. The
radial position is defined as x ¼ ðr̂ � bR2Þ=ð1� bR2Þ. The velocity pro-
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Fig. 3. Validation of the 2D model by the 1D solution (lines: 1D solution; symbols:
2D solution).
file along this cross section is much like the Couette flow with pres-
sure gradient.
3. Results and discussion

3.1. Comparison between 2D model and experiment

According to Eqs. (20–22), the streamlines and the velocity field
in a typical plug is depicted in Fig. 4, which give a clear picture of
the overall flow pattern. The streamlines in Fig. 4a shows the two
vortices near the inner and outer walls. Fig. 4b presents the dimen-
sionless velocity field. The inner wall vortex A is in anticlockwise
direction (positive ûA), while the outer wall vortex B (negative
ûB) is in clockwise direction. To draw the contour lines of dimen-
sionless stream function û, we use the increments of
Dû ¼ 0:002. As shown in Fig. 4a, vortex B is larger than vortex A,
due to the curvature effect. One streamline S–S separates these
two vortices such that ûS—S ¼ 0 and no particle can cross this
streamline by advection. Fig. 4c is the measured lPIV velocity field
by Fries et al. [14]. The dimensionless plug length bL ¼ 1:6 in Fig. 4c
is calculated in pixel from the image by a Matlab program, where

bL ¼ area of plug in pixel

ðwidth of plug in pixelÞ2
ð52Þ

The two counter rotating vortices in Fig. 4c can be clearly observed.
The comparison with the experimental results shows that the 2D
analytical model for microchannel with high aspect ratio captures
the large part of the essential of the flow field, even though the lPIV
measurement was carried out in a three-dimensional microchannel
with an aspect ratio of 1.

The influence of curvature in a discrete flow is different from
the single-phase flow. Continuous single-phase flow travelling
through curved channels experiences interplay between inertial
forces acting to direct axial motion and centrifugal effects acting
along the conduit’s radius of curvature. Under appropriate condi-
tions, these effects establish a radial pressure gradient whose mag-
nitude can become sufficient to generate the transverse Dean
vortices [40]. These transverse Dean vortices expand interfacial
area between species through stretching and folding and can en-
hance mixing [30,31,41]. The flow resistance in the curved channel
is larger than that in the straight channel [42]. Heat transfer be-
tween the fluid and the twisted pipe can be more effective
[43,44]. As plugs move through a straight microchannel, recirculat-
ing flow is generated due to the presence of the interfaces [33]. The
two vortices in the liquid plug are of equal size due to the symmet-
rical effect of the channel walls. As the droplet/plug travels through
a curved channel, the two halves of the plug experience unequal
recirculating flows. One half of the plug is exposed to the inner
arc of the curved channel, a shorter channel path, and thus a small
recirculating flow is generated compared to the other half of the
plug which is exposed to the outer arc with a longer channel path.
Hence, the two vortices become asymmetrical.
3.2. Velocity profiles

3.2.1. Effect of curvature
In order to analyze the effect of the channel curvature on the

flow profile along the cross section X–X, we fixed the dimension-
less plug length at bL ¼ 1 and vary the curvature of the channel
by changing bR2. Fig. 5a shows the velocity profile ûh along X–X
for different curvatures. The maximum velocity increases with
the increase of bR2. The velocity component ûh is nearly symmetric
for bR2 ¼ 0:9 due to the low curvature of the microchannel, as
shown in Fig. 5a.



A 
B 

S 

S

(b)(a) (c) 

Fig. 4. Velocity field in a plug with dimensionless plug length bL ¼ 1:6 and radius ratio bR2=0.8824, (a) streamlines with incremental of dimensionless stream function
Dû ¼ 0:002, (b) dimensionless velocity field, and (c) velocity field obtained by lPIV (reprinted with permission from Ref. [14]).
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û θ

r̂

L̂=1/4

)b()a(
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3.2.2. Effect of dimensionless plug length
To analyze the effect of the dimensionless plug length on the

velocity profile, the radius ratio is kept at bR2 ¼ 0:5. Fig. 5b presents
ûh along cross section X–X for different dimensionless plug lengths.
The results clearly show that the dimensionless plug length influ-
ences the flow field. For long plugs (bL ¼ 2 in Fig. 5b), the velocity
profile is consistence with results reported in Fig. 3. For short plugs
(bL ¼ 1=4 in Fig. 5b), there are two local maximum points of veloc-
ity, as vortices A and B move towards the inner wall and outer wall
respectively, which will be explained in the following subsection.

3.3. Vortex centres

From the physical meaning of the stream function, the change
in stream function between two points is equal to the volume flow
rate of fluid passing through a line between the two points. As the
stream function at the boundary is 0, the extreme points of the
stream function in the plug correspond to the vortex centres, and
the magnitude of the stream function reflects the strength of the
vortex. Hence the location of the vortex centre and the value of
the stream function at the vortex centre are important parameters
to quantify the vortex pattern in the plug. As the stream function is
symmetric with respect to the cross section X–X, the vortex cen-
tres are located along X–X. To quantify the effects of the plug
lengths and the curvature, the radial position of the vortex centre
in the r direction (xA and xB) versus bL and bR2 are shown in Fig. 6a
and b, while the corresponding dimensionless stream functions
at the vortex centres (ûA;maxand ûB;min) are shown in Fig. 6c and
d, respectively.

3.3.1. Effect of curvature
The movement of the vortex centre location (xA and xB) versus

channel curvature (Fig. 6a and b) shows that for a given plug
length, the vortex centres xA and xB move towards the direction
of the inner wall as the channel curvature is increased (that is bR2

is decreased). When the channel curvature is increased, ûB;min in-
creases (Fig. 6d), and the outer vortex B increases in size and
strength and compress the inner vortex A. Fig. 6c shows that the
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magnitude of the dimensionless stream function ûA;max is small
and the inner vortex A is relatively weak. This effect of increasing
curvature on the flow patterns can also be clearly observed in
Fig. 7. Fig. 7a–f illustrate the effect of channel curvature at different
fixed dimensionless plug lengths bL ¼ 1=4;1=2and1 respectively.
3.3.2. Effect of dimensionless plug length
Fig. 6a and b show that the movement of the vortex centre and

the corresponding dimensionless stream functions with channel
curvatures and dimensionless plug lengths.

It is demonstrated that for a relative low channel curvature
(large bR2), the flow patterns depend on the dimensionless plug
length as shown in Fig. 7a, c and e. Since channel curvature effect
is small, the vortices are nearly symmetrical about the streamline
S–S. Initially, with the increase of plug length, both vortices A
and B increase in size and strength. The vortex centres xA and xB

move rapidly towards the streamline S–S, the magnitude of
ûA;max and ûB;min both increase as vortices A and B expand. For rel-
atively large dimensionless plug length (bL > bLlong) the vortex cen-
tres xA and xB becomes almost fixed in their locations. Here bLlong

refers to the dimensionless plug length where ûh along X–X ap-
proaches the fully developed velocity profile as shown in Fig. 3.
The unchanged velocity profiles make the locations of the vortex
centres nearly constant.

For a relative high channel curvature (small bR2), the movement
of the vortex centres strongly depends on the dimensionless plug
length bL, as shown in Fig. 7b, d and f. Initially, with the increase
of bL, vortices A and B increase in size and strength, just like the
plugs with low curvatures. The vortex centres xA and xB move rap-
idly towards the streamline S–S, and the magnitudes of ûA;max and
ûB;min increase as vortices A and B expand. However, due to the
channel curvature, vortex B expands faster than vortex A. If the
plug length increase to a value beyond bLm, the vortices will develop
to such an extent that the inner vortex A is compressed by the out-
er vortex B. Vortex centres xA moves towards the direction of the
inner wall while xB move towards the streamline S–S as vortex B
expands. For example, bLmis 0.54 when bR2 is fixed at 0.25. Similarly
to the case of low channel curvatures, at relatively large dimen-
sionless plug lengths (bL > bLlong), the vortex centres xA and xB

becomes almost fixed in their locations.
3.4. The plug resistance coefficient

According to Eq. (40), the plug resistance coefficient Cf is influ-
enced by the shear force and the surface tension. For the surface
tension contribution (the second term on the right hand side of
Eq. (45)), although there are many factors influencing the plug flow
resistance Cf, the relationships between plug resistance coefficient
Cf and the parameters, such as viscosity l, plug speed Vavg, contact
angles hadv and hrec, surface tension r, are straightforward. In addi-
tion, the surface tension contribution to plug resistance coefficient
is small or even negligible for the cases of small variation of surface
tension ðrrec � radvÞ and small contact angle hysteresis ½cosðhrecÞ
� cosðhadvÞ� [45]. Hence, only the contribution of shear force to
the plug resistant coefficient (the first term on the right hand side
of Eq. (45)) is considered in the following analysis.

Fig. 8 shows the plug resistance coefficient variation with the
increase of the dimensionless plug length for different radius ra-
tios. As the dimensionless plug length increases, plug resistance
coefficient decreases dramatically, and approaches an asymptotic
limit. This can be explained by the high velocity gradient at the
end of the plug, which causes large flow resistance. Hence short
plugs experience large resistance coefficient. It is also shown that
for small radius ratio bR2, the curvature causes high resistance of
the plug flow.

For continuous laminar flow between two parallel plates, in the
fully developed region, the resistance coefficient can be obtained
using its parabolic velocity profile. The resistance coefficient is
24 by using the average velocity as the characteristic velocity
[46]. The plug resistance coefficients are always larger than 24.
And this value is the asymptotic limit when bL !1 and bR2 ! 1,
as shown in Fig. 8. For example, for bR2 ¼ 0:9 and Cf = 24.24 (that
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is 1% deviation from 24), the corresponding dimensionless plug
length is bL ¼ 84:4. Under this condition, the plug behaves as if it
is fully developed continuous flow between parallel plates. There-
fore, when bR2 ¼ 0:9 and bL < 84:4, the idealization of a long plug in
a curved channel as fully developed continuous flow between par-
allel plates cannot provide an accurate prediction of the pressure
loss.

4. Conclusions

This paper analytically investigates plug flow in curved micro-
channels. We use the Finite Fourier Transform method to solve
the biharmonic equation and get the series solution of the stream
functions. The plug resistance coefficient is derived from the mo-
ment balance of the plug. The results show that for the plug mov-
ing in microchannel with low curvature, the vortex centres shift
towards the wall of the microchannel when the dimensionless plug
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length is decreased. For a given plug length, the vortex centres
move towards the direction of the inner wall as the channel curva-
ture is increased. The plug flow resistance was analyzed and the
result showed that the plug flow resistance coefficient decreases
with the increase of the dimensionless plug length and with the
decrease of the microchannel curvature. The flow resistance coeffi-
cient tends to the asymptotic value of 24 as the dimensionless plug
length tends to infinity and the radius ratio approaches to one.
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