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a b s t r a c t

The time-dependent aspects of pressure-driven three-liquid flow under the effect of electroosmotic flow
(EOF) are analytically studied, in which non-conducting liquid is delivered by the pressure gradient and
the interfacial viscous forces of two conducting liquids, the two conducting liquids are driven by electro-
osmosis and pressure gradient. The flow of the three liquids depends on the coupling effects between
them, which involve the electrokinetic effect. The surface charges at the liquid–liquid interface are
accounted in this model. At the interface, the shear stress is not continuous because of the presence of
the surface charges. With Laplace transform method, an analytical solution of such time-dependent
three-liquid flow in rectangular channel is presented.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The microfluidic field, such as micro-TAS (total analysis sys-
tems), lab-on-a-chip and microreactors, has been widely devel-
oped during this decade. When two or more liquids flow in
parallel into a microchannel, laminar fluid interfaces are generated
due to low Reynolds number. The interface and the width of the fo-
cused stream are important for separation, reaction and mixing of
chemical. The interface control is useful for focusing sample fluid
or flow switching. The flow focusing technique provides a particu-
larly effective means of controlling the passage of chemical re-
agents or bio-samples in a microchannel network, and has been
successfully demonstrated in a wide variety of applications such
as cell handing and analysis [1], biomedical and biopower systems
[2], clinical diagnosis [3], immunoassays [4], DNA [5], proteins [6],
other bioassays [7], environmental concerns and gas analysis [8,9].

Using ‘‘flow-rate-ratio” method, hydrodynamic force is used for
flow focusing [10]. Wu and Nguyen [11] theoretically studied the
hydrodynamic focusing inside a microchannel. However, disadvan-
tage of the pressure-driven flow required a high flow-rate-ratio be-
tween the sheath and sample fluids to move the interface location
or to switch the sample fluid. More recently, electroosmotic force
was introduced to achieve switching [12,13]. Comparing with the
hydrodynamic focusing, electroosmotic flow has a wide range of
applications as it has a uniform flow velocity profile and no moving
parts. In microsystems, surface-to-volume ratios are large, electro-
osmotic will be more efficient than ordinary pressure-driven flows.

No-conducting liquids, such as oil, cannot be pumped using
electroosmosis. Due to the low conductivity, the effect of electroos-
mosis can be ignored [14,15]. In order to drive the low electroos-
motic mobility liquid, Brask et al. [14] and Gao et al. [16]
proposed an approach in which the high electroosmotic mobility
liquid has been used as a driving mechanism to drag the low elec-
troosmotic mobility liquid.

Gao et al. [17] presented theoretical and experimental results of
electroosmotic control of the interface between two pressure-dri-
ven fluids. The simulation results showed that electroosmotic
effect can control the interface location of a pressure-driven two-
fluid system. The combined effect of pressure driven and electroos-
mosis was studied by many researchers [18–20].

Comparing with the investigation of the steady state electroos-
motic flow, investigation of the time-depend behavior provides more
insights into the characteristics of the flow. The transient response of
electroosmotic flow in narrow capillary tube was investigated by Keh
and Tseng [21], Marcos et al. [22]. By dividing the zeta potential into
two regimes, Yang et al. [23] reported the transient electroosmotic
flow field. Gao et al. [24] studied the transient characteristics of
two-fluid electroosmotic flow by analytical solution. All the previous
studies focused on interface control either by pressure driven or by
electroosmosis under steady state condition. There is no investigation
on the transient flow behavior on the coupled effect between pres-
sure-driven flow and electroosmotic flow in three-fluid flow.

This paper studies the time-depend aspects of three-fluid elec-
troosmotic flow considering the free charges at the interface by the
analytical method. Because of the ‘‘excess” surface charge at the
interfaces, the interfaces between the three flow are described as
two dividing surface. Under the Debye–Hückel linear approximate,
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the analytical solution of the Poisson–Boltzmann equation is pre-
sented in this paper. Using Laplace transform, the exact solutions
of the velocities and the flow rates are obtained for Navier–Stokes
equation governing this three-liquid flow.

2. Theoretical models

To analyze the system, a Cartesian coordinate system (x,y,z) is
used where the origin point, O, is set to be at the centre of the
non-conducting fluid and the symmetric line is shown in Fig. 1.
Planar interfaces are assumed. The heights of the conducting fluids
and of the non-conducting fluid are denoted as h1; h3 and 2h,
respectively. Half of the width of the channel is denoted by w.
The aspect ratio is defined as v ¼ ðh1 þ h3 þ 2hÞ=2w. As a result
of surface charge, electric double layers (EDLs) form near the li-
quid–liquid interface and the channel wall that is in contact with
the conducting liquid. For a more general situation, the walls of
the microchannel may be made of different materials, so that the
zeta potentials at the bottom and top walls are n1 and n4, respec-
tively, at the side walls as n2 and n5, respectively. The zeta poten-
tials at the interfaces are n3 and n6. The electroosmotic flows are
along the x direction. Due to symmetry, only half of the cross sec-
tion ðz > 0Þ of the rectangular channel is considered.

2.1. Electric double layers in the conducting liquid and surface electric
charges at the interface

When the electrolyte solutions contact with the wall or the
immiscible fluids, the electric double layer is developed spontane-
ously near the wall or at the liquid–liquid interface [25]. Due to the
presence of the EDL, the electric potential distribution, w, is deter-
mined by the well-known Poisson–Boltzmann equation,

r2w ¼ ð2z0en0Þ=e sinhðz0ew=kbTÞ ð1Þ

where z0 is the valence of ion, e is the elementary charge, n0 is the
ionic number concentration in the bulk, e is the permittivity of the
solution, kb is Boltzmann constant, and T is absolute temperature.

The local volumetric net charge density, qq, is given by the
Boltzmann distribution based on the assumption of local thermo-
dynamic equilibrium,

r2w ¼ �qq=e ð2Þ

Integrating Eqs. (1) and (2), we can obtain that

qq ¼ �2z0en0 sinhðz0ew=kbTÞ ð3Þ

In Eq. (3), because the EDL thickness and the zeta potential are
small, it is assumed that the distribution of the electric charge den-
sity is not affected by the external electric field [26]. In addition,
the effect of liquid motion on the charge redistribution is negligible
because the liquid velocity in microchannels is very small.

The dimensionless form of Eq. (1) is

r2 �w ¼ K2 sinhð�wÞ ð4Þ

where �w ¼ z0ew=kbT; K ¼ Lrefj is the ratio of the length scale Lref to
the characteristic double-layer thickness 1=j. For this case, the ref-

Nomenclature

List of symbols
a1;a2;a3 liquid fractions
e elementary charge, e ¼ 1:602� 10�9 ðCÞ
E the electric field
G parameter measuring the electroosmotic force by exter-

nal electric field
h height of the microchannel (m)
M electrokinetic effect in the matching conditions
n0 ionic number concentration in the bulk ðm�3Þ
ni ionic number concentration of the type-i in the bulk

ðm�3Þ
kb Boltzmann constant, k ¼ 1:381� 10�23 ðJ K�1Þ
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Fig. 1. Schematic of the phenomenon and coordinate system.
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erence length is chosen as Lref ¼ w. Here, j is the Debye–Hückel
parameter,

1=j ¼ ðekbT=2z2
0e2n0Þ1=2 ð5Þ

For a small zeta potential ð0 < �w < 1Þ, the electric potentials due
to the charged wall are described by the linear Poisson–Boltzmann
equation which can be written in terms of dimensionless variables
as

r2 �w ¼ K2 �w ð6Þ

Based on the linear approximation, the dimensionless volumet-
ric charge density is given by

�qq ¼ ��wð�z; �yÞ ð7Þ

Due to the symmetry of the EDL fields in the rectangular chan-
nel, Eq. (6) is subjected to the following boundary conditions:

ðfor conducting liquid 1Þ

@�w1=@�z ¼ 0 at �z ¼ 0
�w1 ¼ �n2 at �z ¼ �w
�w1 ¼ �n3 at �y ¼ ��h
�w1 ¼ �n1 at �y ¼ ��h1 � �h

8>>><
>>>:

ð8Þ

ðfor conducting liquid 3Þ

@�w3=@�z ¼ 0 at �z ¼ 0
�w3 ¼ �n5 at �z ¼ �w
�w3 ¼ �n6 at �y ¼ �h
�w3 ¼ �n4 at �y ¼ �h3 þ �h

8>>><
>>>:

ð9Þ

The solutions to the Poisson–Boltzmann equation subjected to
the above boundary conditions are obtained as

�w1 ¼
X1
j¼0

4�n1

ð2jþ 1Þp ð�1Þjþ1 sinh½Bjð�hþ �yÞ�
sinhðBj

�h1Þ
cosðkj�zÞ �

X1
j¼0

� 4�n3

ð2jþ 1Þp ð�1Þjþ1 � sinh½Bjð�h1 þ �hþ �yÞ�
sinh½Bj

�h1�
cosðkj�zÞ

þ
X1
p¼1

2�n2

pp
½ð�1Þp � 1� coshðAp1�zÞ

coshðAp1 �wÞ sin
pp
�h1
ð�yþ �hÞ

� �
ð10Þ

for conducting liquid 1, and

�w3 ¼ �
X1
j¼0

4�n4

ð2jþ 1Þp� ð�1Þjþ1 � sinh½Bjð�y� �hÞ�
sinhðBj

�h3Þ
cosðkj�zÞ

þ
X1
j¼0

4�n6

ð2jþ 1Þp� ð�1Þjþ1 � sinh½Bjð�y� �h3 � �hÞ�
sinh½Bj

�h3�
cosðkj�zÞ

�
X1
p¼1

2�n5

pp
½ð�1Þp � 1� coshðAp3�zÞ

coshðAp3 �wÞ sin
pp
�h3
ð�y� �hÞ

� �
ð11Þ

for conducting liquid 3, where kj ¼ð2j�1Þp=2 �w; Bj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2þk2

j

q
; Ap1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2þðpp=�h1Þ2

q
; Ap3¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2þðpp=�h3Þ2

q
.

In the above discussion of electroosmosis, the charge state of
the surface is described in terms of surface potential at the shear
plane, which is identified with the zeta potential [27]. This surface
potential is related to a certain charge density at the surface [28].
From electrostatics, the normal component of the gradient of the
electric potential, w, jumps by an amount proportional to the sur-
face charge density, qs

q. That is

qs
q ¼ �e@w=@y ð12Þ

It is assumed that the gradient of electric potential in the non-
conducting liquid vanishes. Using the reference surface charge
density as ðekbTÞ=ðLref z0eÞ, we obtain the dimensionless surface
charge densities at the two-liquid interface as

�qs
q1ð�zÞ ¼ �

X1
j¼1

4ð�1Þjþ1Bj

ð2jþ 1Þp
�n1

sinhðBj
�h1Þ
�

�n3

tanhðBj
�h1Þ

" #
cosðkj�zÞ

�
X1
p¼1

2�n2
�h1
½ð�1Þp � 1� coshðAp1�zÞ

coshðAp1 �wÞ ð13Þ

for the surface charge at interface 1–2, and

�qs
q3ð�zÞ ¼

X1
j¼1

4ð�1Þjþ1Bj

ð2jþ 1Þp
�n4

sinhðBj
�h3Þ
�

�n6

tanhðBj
�h3Þ

" #
cosðkj�zÞ

þ
X1
p¼1

2�n5

�h3
½ð�1Þp � 1� coshðAp3�zÞ

coshðAp3 �wÞ ð14Þ

for the surface charge at interface 2–3.
The solutions of Eqs. (13) and (14) show that the contributions of

zeta potential at the top/bottom walls, n4 and n1, are relatively small
and the contributions of the side walls, n2 and n5 are also relatively
small except when z approaches to w. The volumetric net charge
density, Eq. (7), and the interface charge density, Eqs. (13) and
(14), are required to determine the electrostatic force caused by
the presence of zeta potential. The bulk electrostatic force is consid-
ered as an additional body force exerting on the conducting liquid in
the conventional Navier–Stokes equation. Therefore, the conducting
liquids are under the action of pressure gradient, electrostatic force
and the viscous shear force at the interface. Similarly, the non-con-
ducting liquid flows as a result of pressure gradient and external
electrostatic force due to the electrokinetic charge density at the
interface, which will be discussed in the following section.

2.2. Momentum equation of the three-liquid flow

We now consider the transient pressure-driven three-liquid,
under the influence of two uniform external electric fields, Ex1 and
Ex3, through a rectangular channel as illustrated in Fig. 2. The Na-
vier–Stokes equation for an incompressible laminar liquid is given by

�q
@V
@t
þ �qðV � rÞV ¼ �r�pþ Fþ 1

Re
�lr2V ð15Þ

where, V is the velocity vector, p is the pressure, q is the density,
and l is the dynamic viscosity of the fluid. Ignoring the gravity ef-
fect, the force F is caused by the action of the induced electrical
field, Ex, and the net charge density, qeðy; zÞ. This force exerts only
in the electric double-layer regions of the conducting fluid flow
along the x-direction. For the conducting fluid, F ¼ Gx �qq, and for
the non-conducting fluid, F ¼ 0.

To evaluate the electrokinetic effects, it is assumed that the flow
is formed by three simple immiscible Newtonian liquids with con-
stant viscosities, which are independent of shear rate and the local
electric field strength. The flow is a transient, fully developed, lam-
inar stratified flow. The pressure gradient is assumed to be con-
stant along the channel and the pressure gradient along y and z
directions are both zero.

As EDLs form in the conducting liquid flow, for fully developed
flow, the momentum equations of the three liquids reduce to

ðconducting fluid 1Þ @�u1

@�t
¼ 1

Re
@2�u1

@�y2 þ
@2�u1

@�z2

 !
þ Gx1 �qq1 �

d�p
d�x

ð16Þ

ðnon-conducting fluid 2Þ �q2
@�u2

@�t
¼

�l2

Re
@2�u2

@�y2 þ
@2�u2

@�z2

 !
� d�p

d�x
ð17Þ

ðconducting fluid 3Þ �q3
@�u3

@�t
¼

�l3

Re
@2�u3

@�y2 þ
@2�u3

@�z2

 !
þ Gx3 �qq3 �

d�p
d�x

ð18Þ
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where Gx1¼ð2z0en0Lref Ex1Þ=ðqref U
2
refÞ; Gx3¼ð2z0en0Lref Ex3Þ=ðqref U2

refÞ,
the subscripts, 1, 2 and 3, denote the conducting liquid 1, non-con-
ducting fluid 2 and the conducting liquid 3, respectively. u is the
velocity along x-direction. qe1 and qe3 are the local volumetric net
charge densities shown by Eq. (3), respectively. The reference Lref

is the hydraulic diameter of the rectangular channel. The reference
velocity, Uref ¼ ðEx1e0ernrefÞ=lref ; the reference time, �t ¼ L2

ref=m1; the
reference viscosity, lref ¼ l1, the reference density, qref ¼ q1; the
kinematics viscosity ratio a2 ¼ m2=m1; a3 ¼ m3=m1, the dynamic vis-
cosity ratio, �l1 ¼ b1 ¼ 1; �l2 ¼ b2 ¼ l2=l1 and �l3 ¼ b3 ¼ l3=l1;
the Reynolds number is defined as Re ¼ ðqref Uref LrefÞ=lref .

At the interface, matching conditions must be obeyed. There are
the continuities of velocity

�u1 ¼ �u2 ðinterface 1—2Þ ð19Þ
�u2 ¼ �u3 ðinterface 2—3Þ ð20Þ

and the shear stress balance, which jumps abruptly at the interface
because of the presence of the certain surface charge density,

�l1
@�u1

@�y
þM1 �qs

q1 ¼ �l2
@�u2

@�y
; at �y ¼ ��h ðinterface 1—2Þ ð21Þ

�l3
@�u3

@�y
þM3 �qs

q3 ¼ �l2
@�u2

@�y
; at �y ¼ �h ðinterface 2—3Þ ð22Þ

where y is the direction normal to the interface of the two liquids.
The term M1 �qs

q1 and M3 �qs
q3 account for the force on the interface

1–2 and interface 2–3 due to the electrokinetic interface charges,
respectively.

The dimensionless matching conditions become

ðinterface 1—2Þ
�u1ð�z;��h;�tÞ ¼ �u2ð�z;��h;�tÞ
@�u1ð�z;��h;�tÞ

@�y ¼ b2
@�u2ð�z;��h;�tÞ

@�y �M1 �qs
q1ð�zÞ

(
ð23Þ

ðinterface 2—3Þ
�u3ð�z; �h;�tÞ ¼ �u2ð�z; �h;�tÞ
@�u3ð�z;�h;�tÞ

@�y ¼ ðb2=b3Þ @
�u2ð�z;�h;�tÞ
@�y �M3 �qs

q3ð�zÞ

(
ð24Þ

where M1 ¼ ðekbTEx1Þ=ðz0eUreflrefÞ and M3 ¼ ðekbTEx3Þ=ðz0eUref

lrefÞ; M1 and M2 are the electrokinetic effects in the matching
conditions.

In the rectangular-cross-section channel, the dimensionless
boundary conditions for fluids 1, 2 and 3 are:

ðconducting fluid 1Þ

@�u1
@�z ¼ 0 when �z ¼ 0
�u1 ¼ 0 when �z ¼ �w
�u1 ¼ 0 when �y ¼ ��h� �h1

�u1 ¼ 0 when �t ¼ 0

8>>><
>>>:

ð25Þ

The dimensionless boundary conditions for the non-conducting
liquid 2 are

ðnon-conducting fluid 2Þ

@�u2
@�z ¼ 0 when �z ¼ 0
�u2 ¼ 0 when �z ¼ �w
�u2 ¼ 0 when �t ¼ 0

8><
>: ð26Þ

The dimensionless boundary conditions for the conducting
liquid 3 are

ðconducting fluid 3Þ

@�u3
@�z ¼ 0 when �z ¼ 0
�u3 ¼ 0 when �z ¼ �w
�u3 ¼ 0 when �y ¼ �h3 þ �h
�u3 ¼ 0 when �t ¼ 0

8>>><
>>>:

ð27Þ

Due to linearity, the velocities of the conducting liquids and the
non-conducting liquid (Eqs. (16)–(18)) can be decomposed into
two parts:

�u ¼ �up þ �uE ð28Þ

where �uE corresponds to the velocity driven by electroosmotic force,
and �up is the velocity driven by pressure gradient.

The dimensionless momentum equations can be presented as

Re @�uE
1

@t ¼
@2 �uE

1
@�z2 þ

@2 �uE
1

@�y2 þ ReGx1 �qq1

Re @�uP
1

@t ¼
@2 �uP

1
@�z2 þ

@2 �uP
1

@�y2 � Re dP
d�x

8<
:

9=
; ðconducting liquid 1Þ ð29Þ

Re
a2

@�uE
2

@�t ¼
@2 �uE

2
@�z2 þ

@2 �uE
2

@�y2

Re
a2

@�uP
2

@t ¼
@2 �uP

2
@�z2 þ

@2 �uP
2

@�y2 � Re
b2

dP
d�x

8<
:

9=
; ðnon-conducting liquid 2Þ ð30Þ

and

Re
a3

@�uE
3

@�t ¼
@2 �uE

3
@�z2 þ

@2 �uE
3

@�y2 þ Re
b3

Gx3 �qq3

Re
a3

@�uP
3

@t ¼
@2 �uP

3
@�z2 þ

@2 �uP
3

@�y2 � Re
b3

dP
d�x

8<
:

9=
; ðconducting liquid 3Þ ð31Þ

The Laplace transform method is applied to solve these equa-
tions. This paper assumes that the zeta potentials are not affected
by the external electric field. We substitute the local volumetric
net charge density, Eq. (13), into momentum equation Eqs. (29),
then the Laplace transform of the conducting fluid 1 is

sReUE
1ð�z; �y; sÞ ¼

@2UE
1ð�z; �y; sÞ
@�z2 þ @

2UE
1ð�z; �y; sÞ
@�y2

" #
� ReGx1

�w1ð�z; �yÞ
s

ð32Þ

with the boundary conditions of

@UE
1ð�z;�y;sÞ
@�z ¼ 0 when �z ¼ 0

UE
1ð�z; �y; sÞ ¼ 0 when �z ¼ �w

UE
1ð�z; �y; sÞ ¼ 0 when �y ¼ ��h� �h1

8>><
>>: ð33Þ

where s is the Laplace transform parameter. The Laplace transforms
of Eqs. (29)–(31) are

sReUP
1ð�y;�z; sÞ ¼

@2UP
1ð�y;�z; sÞ
@�z2 þ @

2UP
1ð�y;�z; sÞ
@�y2 � ReðdP=d�xÞ

s
ð34Þ

with the boundary conditions of

Constant 
pressure 
source 

Applied electrical field ( 3xE ) 

Applied electrical field ( 1xE ) 

Conducting fluid 3 
Interface 2-3

Conducting fluid 1 
Interface 1-2

Non-conducting fluid 2 

Fig. 2. Schematic representation of the three-fluid electroosmotic stratified flow.
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@Up
1ð�z;�y;sÞ
@�z ¼ 0 when �z ¼ 0

Up
1ð�z; �y; sÞ ¼ 0 when �z ¼ �w

Up
1ð�z; �y; sÞ ¼ 0 when �y ¼ ��h� �h1

8>><
>>: ð35Þ

The Laplace transforms of Eqs. (30) and (31) are
Non-conducting fluid 2

sRe
a2

UE
2ð�z; �y; sÞ ¼

@2UE
2ð�z; �y; sÞ
@�z2 þ @

2UE
2ð�z; �y; sÞ
@�y2 ð36Þ

with the boundary conditions of

@UE
2ð�z;�y;sÞ
@�z ¼ 0 when �z ¼ 0

UE
2ð�z; �y; sÞ ¼ 0 when �z ¼ �w

(
ð37Þ

and

@2Up
2ð�z; �y; sÞ
@�z2 þ @

2Up
2ð�z; �y; sÞ
@�y2 ¼ sRe

a2
Up

2ð�z; �y; sÞ þ
ReðdP=d�xÞ

sb2
ð38Þ

with the boundary conditions of

@Up
2ð�z;�y;sÞ
@�z ¼ 0 when �z ¼ 0

Up
2ð�z; �y; sÞ ¼ 0 when �z ¼ �w

8<
: ð39Þ

Conducting fluid 3

sRe
a3

UE
3ð�z; �y; sÞ ¼

@2UE
3ð�z; �y; sÞ
@�z2 þ @

2UE
3ð�z; �y; sÞ
@�y2 � Re

sb3
Gx3

�w3ð�z; �yÞ ð40Þ

with the boundary conditions of

@UE
3ð�z;�y;sÞ
@�z ¼ 0 when �z ¼ 0

UE
3ð�z; �y; sÞ ¼ 0 when �z ¼ �w

UE
3ð�z; �y; sÞ ¼ 0 when �y ¼ �hþ �h3

8>><
>>: ð41Þ

and

@2Up
3ð�z; �y; sÞ
@�z2 þ @

2Up
3ð�z; �y; sÞ
@�y2 ¼ sRe

a3
Up

3ð�z; �y; sÞ þ
ReðdP=d�xÞ

sb3
ð42Þ

with the boundary conditions of

@Up
3ð�z;�y;sÞ
@�z ¼ 0 when �z ¼ 0

Up
3ð�z; �y; sÞ ¼ 0 when �z ¼ �w

Up
3ð�z; �y; sÞ ¼ 0 when �y ¼ �hþ �h3

8>><
>>: ð43Þ

Using the separation of variables method, the solution of Eq.
(32) with the boundary of Eq. (33) gives as

UE
1ð�z; �y; sÞ ¼

ffiffiffiffi
2
�w

r X1
j¼0

ftanh½D1jð�hþ �h1Þ� coshðD1j�yÞ þ sinhðD1j�yÞgbE
1j

n

�
/1jð��h1 � �h; sÞ

cosh½D1jð�hþ �h1Þ�
coshðD1j�yÞ þ /1jð�y; sÞ

)
cosðkj�zÞð44Þ

Using the same method, the solutions of Eqs. 34, 36, 38, 40, 42
give, respectively, as

UP
1ð�y;�z;sÞ¼

ffiffiffiffi
2
�w

r X1
j¼0

Re
skjD

2
1j

dP
d�x

ffiffiffiffi
2
�w

r
ð�1Þj coshðD1j�yÞ

cosh½D1jð�h1þ�hÞ�
�1

( )(

þ tanh½D1jð�h1þ�hÞ�coshðD1j�yÞþsinhðD1j�yÞ
� �

bP
1j

o
cosðkj�zÞ

ð45Þ

UE
2ð�z; �y; sÞ ¼

ffiffiffiffi
2
�w

r X1
j¼0

aE
2jðsÞ coshðEE

2j�yÞ þ aE
2jðsÞ sinhðEE

2j�yÞ
h i

cosðkj�zÞ

ð46Þ

Up
2ð�z; �y; sÞ ¼

X1
j¼1

ap
2jðsÞ coshðE2j�yÞ þ bp

2jðsÞ sinhðE2j�yÞ � Re� dP
d�x

(

�
ffiffiffiffi
2
�w

r
� ð�1Þj

sb2kjE
2
2j

)
cosðkj�zÞ ð47Þ

UE
3ð�z; �y; sÞ ¼

X1
j¼0

� tanh½E3jð�hþ �h3Þ� coshðE3j�yÞ þ sinhðE3j�yÞ
� �

bE
3j

n

�
/3jð�hþ �h3; sÞ

cosh½E3jð�hþ �h3Þ�
coshðE3j�yÞ þ /3jð�y; sÞ

)
cosðkj�zÞ ð48Þ

UP
3ð�z;�y;sÞ¼

ffiffiffiffi
2
�w

r X1
j¼0

1
E2

3j

Re
kjsb3

dP
d�x

ffiffiffiffi
2
�w

r
ð�1Þj coshðE3j�yÞ

cosh½E3jð�h3þ�hÞ�
�1

( )(

þ �tanh½E3jð�h3þ�hÞ�coshðE3j�yÞþsinhðE3j�yÞ
� �

bP
3j

o
cosðkj�zÞ

ð49Þ

where D1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

j þ sReÞ
q

; E2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

j þ sRe=a2

q
; E3j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

j þ sRe=a3

q
.

Integrate the matching conditions of Eqs. (23) and (24), the
coefficients bE

1j; aE
2j; bE

2j; bE
3j; bp

1j; ap
2j; bp

2j, and bp
3j can be obtained as

bE
1j ¼ bE

2j=Aþ H ð50Þ

aE
2j ¼ JbE

1j þ KbE
3j þ L ð51Þ

bE
2j ¼ CbE

3j þ DbE
1j þ G ð52Þ

bE
3j ¼ bE

2j=Bþ I ð53Þ
bp

1j ¼ ðb
p
2j � TÞ=S ð54Þ

ap
2j ¼ NbP

3j þ Qbp
1j þM ð55Þ

bp
2j ¼ ðO� RT=S� PU=VÞ=ð1� R=S� P=VÞ ð56Þ

bP
3j ¼ ðb

P
2j � UÞ=V ð57Þ

The detailed mathematical derivation of the coefficients A to V,
/1j; /3j is presented in Appendix A.

According Q E
j ðsÞ¼2

R��h
��h��h1

R �w
0 UE

j ð�y; �z;sÞd�zd�y and Q P
j ðsÞ¼2

R��h
��h��h1R �w

0 UP
j ð�y;�z;sÞd�zd�y, the dimensionless volumetric flow rates are ob-

tained (Appendix A).
To obtain the final results, it is required to applied inversions of

the Laplace transform on velocities UEð�y;�z; sÞ; Upð�y;�z; sÞ and flow
rates Q EðsÞ;QpðsÞ. Due to the complex nature of those forms, the
numerical inversion of Laplace transforms method–Gaver–Stehfest
method with double precision is used in this paper [29].

3. Results and discussion

In this paper, governing equations for the EDL distributions in
the two conducting liquids, velocity profiles, flow rates for the
three-fluid flow, were derived for a rectangular microchannel.
The two conducting fluids hold the bottom and upper parts, the li-
quid fractions for conducting fluid 1 and conducting fluid 3 are 0.3,
respectively, and the non-conducting fluid holds the middle part of
the channel, the liquid fraction is 0.4. Many methods for determin-
ing the zeta potentials at the wall and at the interface were pro-
posed [25]. The zeta potentials at the channel walls,
�nwallð�n1; �n2; �n4; �n5Þ depend on the material properties of the wall
and the ionic properties of the fluid [12]. We choose the walls zeta
potentials to be the same at �nwallð�n1; �n2; �n4; �n5Þ ¼ �25 mV as the de-
fault value. The zeta potential between two immiscible liquids, �n3

and �n6, does not only depend on the ionic properties of two fluids,
but also on the pH and the concentration of the electrolyte [30,31].
The dimensionless parameter K is defined as K ¼ jDh to evaluate
parameters affecting the EDL profiles. 1=j refers to the character-
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istic thickness of the EDL. As the Debye–Hückel parameter in Eq.
(5) is proportional to the square root of the bulk ionic concentra-
tion n0, the variation of the ionic concentration will alter the EDL
thickness. In this analysis, the concentration of the two conducting
fluids is in the range of 10�6—10�5 M, therefore, the bulk concen-
tration n0 ¼ 6:022� 1020—6:022� 1021 m�3 and the EDL dimen-
sion parameter K ¼ 87—275.

3.1. Electrical potential

Fig. 3 shows the potential distribution along the symmetrical
line when the interface zeta potential �n3 ¼ �n6 ¼ �nwall. The EDL only
exists in the two conducting fluids. The interface zeta potential in-
duces an EDL at the liquid–liquid interface, where the electroos-
motic body forces are present. The result shows that the
interface zeta potential affects the electrical potential distribution
dramatically. The EDL profiles are shown in Fig. 3 where
K ¼ 87 ð1=j � 300 nmÞ and K ¼ 275 ð1=j � 97 nmÞ. It shows that
the value of K controls the dimensionless EDL thickness: a larger
value of K corresponds to a thinner EDL.

Points A, B, C are indicated in Fig. 3. Point A is within the EDL at
�y ¼ 0:9925, point B corresponds to the flow of conducting fluid 1,
outside the EDL at �y ¼ 0:85, point C is in the non-conducting fluid re-
gion. The dynamic response of the flow in points A, B and C will be
discussed.

From Eq. (28), the velocity �u of three-fluid can be decomposed
into two parts, �up and �uE. �up corresponds to velocity driven by pres-
sure gradient and �uE corresponds to velocity driven by electroos-
motic effect. With the proposed analytical model, we investigate
the following cases. (1) With zero pressure gradient is applied
across the microchannel, the flow is simply a three-fluid electroos-
motic flow with the flow velocity �uE. (2) When both the pressure
gradient and the electric field are applied across the microchannel,
the three-fluid is driven by the combined electroosmotic force and
pressure gradient with the flow velocity �u.
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Fig. 3. Potential distributions along the symmetrical line when �n3 ¼ �n6 ¼ �nwall . Point
A is within the EDL at �y ¼ 0:9925; Point B is outside the EDL at �y ¼ 0:85; Point C is in
the non-conducting fluid region at �y ¼ 0:5.
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L. Haiwang et al. / International Journal of Heat and Mass Transfer 53 (2010) 772–785 777



Author's personal copy

3.2. Three-fluid electroosmotic flow

Figs. 4 and 5 show the time evolution of the velocity profiles, �uE

at the symmetric line when the flow parameters are zero pressure
gradient, Ex1 ¼ Ex3 ¼ 3000 V=m; K ¼130;a1¼a2¼a3¼1; b1¼b2¼
b3¼1; ð�ninterface¼ �nwall or �ninterface ¼ 0Þ. The viscosity and density of
the NaCl solution is lref ¼ 10�3 Pa s and qref ¼ 103 kg=m3, respec-
tively. With these reference potential and viscosity, the

Helmholtz–Smoluchowski electroosmotic velocity is chosen as
the reference velocity Uref ¼ ðEx1enrefÞ=lref ¼ 1:59 � 10�4 m=s.
The corresponding Reynolds number is Re � 0:0063.

Fig. 4 shows the time evolution of the velocity profile when the
interface zeta potential �n3 ¼ �n6 ¼ �nwall. It can be seen that upon the
application of the electric fields, the conducting fluids are activated
in regions close to the channel walls and the interfaces. The veloc-
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ities of the two conducting fluids increase rapidly from zero in the
same direction within the EDL regions close to the walls and the
interfaces. But the effects of the force from the free charges of
the interface cause the interface velocity increases rapidly in the
opposite direction. This is because the interface charges are equal
to the total net charges within the EDL regions, close to the inter-
face. The velocity at the interface region is significantly influenced
by the surface force during the initial transient state. As time
elapses, the liquid inside the EDLs exerts hydrodynamic shear
stress on its adjacent liquid; the liquid outside the EDL regions
may be considered as ‘passive’ flow caused by shear viscous forces.

For non-conducting fluid, during the initial transient time, it
moves in the opposite direction. As time elapse, because the EDLs

exert the hydrodynamic shear stress on the adjacent conducting
fluids, the negative velocity reduces. The characteristic of non-con-
ducting liquid depends on the matching conditions between the
three liquids, which involve the external electric fields, the viscos-
ity ratio of liquids, the interface phenomenon, and the charge den-
sity in the conducting liquids.

Fig. 5 shows the velocity profile when the interface zeta poten-
tial �n3 ¼ �n6 ¼ 0. Comparing Figs. 4 with 5, we find that: the velocity
profile is completely different in the absence of the surface charge.
Upon the application of the electric field, the flow is activated only
in the EDL regions near the channel walls in the conducting liquids.
In the non-conducting liquid, because of the absence of EDLs, there
is no opposite force exerted on the interface; the non-conducting
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liquid is driven by the hydrodynamic viscous forces at the inter-
faces only. These figures show that a lower interface zeta potential
would result in a higher velocity of the non-conducting liquid.

Fig. 6 shows the steady state ð�t > 10�2Þ dimensionless velocity
profiles, �uE, at the symmetric line, when zero pressure gradient,
Ex1 ¼ Ex3 ¼ 3000 V=m; b1 ¼ b3 ¼ 1 and different viscosity ratios
b2 ¼ 1;2;3. When electric fields are applied across the conducting
fluids, the conducting fluids 1 and 3 are driven by electroosmosis,
which drags the non-conducting fluid 2 by the hydrodynamic
shear force. The results indicate that the velocity profiles of the
conducting fluids are strongly dependent on the viscosity ratio,
b2. The flow resistance of the non-conducting fluid decreases with
the decreasing in b2. Thus, the non-conducting fluid can be driven
with less flow resistance as shown in Fig. 6. When the viscosity ra-
tio is higher, the flow resistance of the non-conducting fluid is

higher, resulting in a steeper velocity gradient at the interface of
the conducting fluids.

For an extreme case, the infinite viscosities of l2 and l3 make
the flows of the non-conducting fluid 2 and the conducting fluid
3 resemble that of the channel wall. Hence the flow of the conduct-
ing fluid 1 resembles the single-fluid EOF, through which we can
compare the results of the proposed analytical model with those
of the previous works. If the channel width in much larger than
the channel height, in the fully developed state, the velocity profile
at the symmetric section in this channel is identical with flow be-
tween two infinite parallel flat plates.

The comparison between theoretical analysis and the published
two-fluid experimental data [32] is shown in Fig. 7. To simulate the
flow, a infinite viscosity of �l3, is assumed which make the conduct-
ing fluid 3 resemble that of the channel wall. Hence we can com-
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pare our transient model when �t ¼ 10�2 (steady state) with the
two-fluid data. Our results agree well with the published experi-
mental data.

3.3. Three-fluid flow driven by electroosmosis and pressure gradient

When both pressure gradient and electric field are applied, the
three liquids are driven by electroosmotic body force and pressure
gradient. For a given pressure gradient, the velocities and flow rates
of the three liquids depend only on the applied electroosmotic force.

Figs. 8 and 9 show the time evolution of the velocity profiles
(�u; �up and �uE) when K ¼ 130; Ex1 ¼ Ex3 ¼ 3000 V=m; d�p=d�z ¼
50;000; a1 ¼ a2 ¼ a3 ¼ 1; b1 ¼ b2 ¼ b3 ¼ 1. The interface zeta po-
tential of Figs. 8 and 9 is �n3 ¼ �n6 ¼ �nwall and �n3 ¼ �n6 ¼ 0, respec-

tively. When time is 0, the fluid velocity anywhere in the channel
is at rest and hence the velocity equals zero. It can be seem that
upon the application of the electric field and pressure gradient,
the flow begins close to the channel walls and the liquid–liquid
interface, the velocity increases rapidly at the wall and interface
to its peak value within the EDL regions. This reveals the unique
feature of the electroosmotic flow as the flow is driven by the elec-
trical body force due to the interaction of the applied electric field
and the net charge density, such driving force occurs only within
the EDL regions. The velocity profile of non-conducting liquid de-
pends on the interface shear stress and the charge density in the
conducting liquids. During this early stage of the evolution, elec-
troosmosis effect dominate, the velocity profile of �u and �uE are sim-
ilar as shown in Figs. 8 and 9(a).
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At the steady state, the velocity profile �uE exhibits a plateau,
resembling a plug-like flow pattern in the conducting fluids. The
velocity profiles of �up exhibits a parabolic profile due to the pres-
ence of the pressure gradient. The combined velocity profile, �u is
the superposition of the solutions of �uE and �up.

To study the dynamic responses of the flow under the applica-
tions of both constant electric field and pressure gradient, flow
velocity at locations within the EDL region and outside the EDL
are analyzed. Fig. 10(a) shows the time-dependent velocity re-
sponse within the EDL at �y ¼ 0:9925 (point A in Fig. 3), whereas
Fig. 10(b) shows the velocity response outside the EDL at �y =
0.85 (point B in Fig. 3), and Fig. 10(c) shows the velocity response
of the non-conducting fluid region at �y ¼ 0:5 (point C in Fig. 3) The
flow conditions are: K ¼ 130; Ex1 ¼ Ex3 ¼ 3000 V=m; d�p=d�z ¼
50; 000;a1 ¼ a2 ¼ a3 ¼ 1; b1 ¼ b2 ¼ b3 ¼ 1; �n3 ¼ �n6 ¼ �nwall.

The local velocity, �uE; �up at points A, B and C are normalized by
defining dimensionless variables as

�uE� ¼ �uE=�uE
steady state ð58Þ

�up� ¼ �up=�up
steady state ð59Þ

where �u ¼ u=Uref , and �usteady state ¼ ulocal steady state velocity=Uref is the lo-
cal steady state velocity.

It can be noted from Fig. 10(a) that, within the EDL region (point
A), the velocity response due to pressure gradient is always behind
that applied electric field. Though near the wall, the velocity is af-
fected by the no-slip boundary condition, however, within the EDL
region the flow is driven by the electrical body force resulting from
the interaction of the electric field and the net charge density. As
time elapse, the liquid inside the EDL exerts viscous shear stress
to the adjacent liquid and fluids outsides the EDL (point B) is set
in motion layer by layer, finally extending to the entire region of
the conducting liquid, in this region, electroosmosis effect
dominate.

At the bulk conducting liquid region (region away from EDL, at
point B), the liquid is driven by the viscous shear diffusion as the
result of (i) the faster fluid layers at the EDL region and (ii) the fas-
ter lamina fluid layers immediately closer to the center, i.e. the
combined electric field and pressure gradient which pull the fluid
at the bulk conducting liquid region. The results show that both
�uEand �up achieve the steady state at �t ¼ 10�5.

Fig. 10(c) shows the flow in the non-conducting fluid region.
The velocity response due to the pressure gradient is faster that
of the applied electric field, pressure gradient effect dominates.
The liquid at point C is driven by: (i) the faster lamina immediately
closer to the center due to pressure gradient, and (ii) the interfacial
shear stress. Same as before, both �uE and �up achieve the steady
state at �t ¼ 10�5.

3.4. Volumetric flow rate

The dimensionless volumetric flow rates of the three-fluid
electroosmotic flow, �q1; �q2 and �q3, where zero gradient
ðd�p=d�z ¼ 0Þ; Ex1 ¼ Ex3 ¼ 3000 V=m; K ¼ 130; q1 ¼ q2 ¼ q3, are
plotted in Fig. 11 for different values of interface zeta potentials
(Fig. 11(a)), dynamic viscosity ratios b2 (Fig. 11(b)), and kinematics
viscosity ratio a2 (Fig. 11(c)).

In Fig. 11(a), the dynamic viscosity and density of three liquids
are identical. It can be seen that the higher interface zeta potentials
will induce a large flow rate of the conducting liquids (�q1 and �q3Þ,
but the flow rate of the non-conducting liquid ð�q2Þ is lower. In the
presence of free charges at the interface, the non-conducting liquid
will flow in the opposite direction. Gao [24] called this phenomena
‘‘back flow”. The back flow rate increases as the increase of the
interface zeta potential. As shown in Fig. 11(a), if the interface zeta

potentials are larger than the wall zeta potential, the flow rate of
the non-conducting liquid may be negative at the steady state.

Fig. 11(b) shows the effect of different viscosity ratio, b2, on the
volumetric flow rate. In this figure, n3 ¼ n6 ¼ 0:5n1; q1 ¼ q2 ¼ q3;

b1 ¼ b3 ¼ 1. The results show that the liquid with a lower viscosity
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Fig. 11. Dimensionless volumetric flow rates for different parameters ðEx1 ¼ Ex3 ¼
3000 V=m; d�p=d�z ¼ 0; K ¼ 130Þ.
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ratio can be driven with a lower flow resistance, in another word; the
volumetric flow rate is higher under the same electric fields. Hence
the three-liquid electroosmotic pumping method is feasible for the
relatively small interface zeta potentials and viscosity ratio b2.

Fig. 11(c) shows the volumetric flow rates for different density
of the non-conducting liquid. In this figure, n3 ¼ n6 ¼ 0:5n1;

b1 ¼ b2 ¼ b3 ¼ 1; q1 ¼ q3. The results show that the density does
not affect the velocity profile but affects the developing time, this
figure shows that the non-conducting liquid with a higher density
requires a longer developing time to approach the steady state. The
kinematics viscosity ratio, a2 ¼ ð�l2=�q2Þ=ð�l1=�q1Þ, evaluates the
developing time.

Fig. 12 shows the dimensionless volumetric flow rates of the
three-fluid flow for case (a) Ex1 ¼ Ex3 ¼ 3000 V=m; d�p=d�z ¼ 0, and
case (b) Ex1 ¼ Ex3 ¼ 3000 V=m; d�p=d�z ¼ 10;000. As shown, the ef-
fect of pressure gradient does not affect the developing time. Vol-
umetric flow rate is higher under the combined electroosmotic and
pressure gradient.

4. Conclusion

An analysis of the transient three-liquid flow, which driven by
the combined electroosmotic force and pressure gradient, is pre-
sented in this work. By considering the electroosmotic force as
the body forces in the conducting liquids, this paper solves the lin-
ear Poisson–Boltzmann equation and Navier–Stokes equation to-
gether by the analytical method. Due to the presence of the
surface free charge densities at the liquid–liquid interface, the
forces in the diffuse layers and the forces exerted at the interfaces
are accounted in this model. The velocity profiles and the flow
rates for the transient, two-dimensional three-liquid flow is ob-
tained analytically by the method of Laplace transform method.

The computational results show that the three-liquid electroos-
motic pumping is feasible for the relative small interface zeta po-
tential and viscosity ratio b2. The detail insight of the flow
characteristics of this flow configuration are provided by the veloc-
ity profile as time evolution.

Appendix A

In the following, we will define several auxiliary functions
which facilitate the analytical evaluation of the pertinent expres-
sions in the present work. All these functions are obtained through
integrating matching conditions, velocity profiles and shear stress
at the interface. They are defined as follows:

A ¼ tanh½D1jð�hþ �h1Þ� coshðD1j
�hÞ sinhðE2j

�hÞ � sinhðD1j
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