INTRODUCTION

Hydrophobic interactions are ubiquitous in water-based systems in our daily activities, from salad dressing and cleaning action of shampoos and detergents to phenomena related to industrial practices, such as attachment of hydrophobic particles to air bubbles in froth flotation and protein folding for biotechnology. However, the origin of hydrophobic interactions has remained controversial for more than 30 years. The complexity of the hydrophobic interaction originates from a number of concomitant mechanisms. Despite contentious experimental validation, several mechanisms have been proposed. The mechanisms reported in the literature include the entropic origin, resulting from the rearrangement of water structure near the hydrophobic surfaces, \(^1\)–\(^2\) nano-bubble bridging capillary forces, \(^5\)–\(^7\) cavitation (separation-induced phase transition), \(^8\)–\(^17\) hydrodynamic origin, \(^18\) and electrostatic origin. \(^19\),\(^20\) A brief review of direct force measurements between hydrophobic surfaces in aqueous solutions has also been reported. \(^21\) This review concluded that only the short-range hydrophobic attraction (<100 Å) represents the true hydrophobic interaction.

Dissolved gases have shown a significant effect on the strong attraction between hydrophobic surfaces. Except for the extensively documented effect of bridging nanobubbles and cavitation on the long-range attractive forces, a recent study found that the interfacial gas enrichment (IGE) of dissolved gases significantly contributes to the short-range attractive forces between solid hydrophobic surfaces of an atomic force microscopy (AFM) probe and hydrophobic solid substrate. \(^21\) The existence of IGE is also examined by molecular dynamics simulation and is experimentally confirmed by the reduced water density at hydrophobic surfaces in the presence of dissolved gases observed via direct noninvasive neutron reflectivity measurements. \(^22\) In addition, the intrinsic structure of water next to the oil phase has been proved to be similar to the bare water–vapor interface using molecular dynamics simulation of realistic models of alkanes and water. \(^23\) However, the role of IGE in controlling the attraction between fluid–fluid interfaces of foam films and emulsion films is difficult to

ABSTRACT: Interfacial gas enrichment (IGE) of dissolved gases in water is shown to govern the strong attraction between solid hydrophobic surfaces of an atomic force microscopy (AFM) colloidal probe and solid substrate. However, the role of IGE in controlling the attraction between fluid–fluid interfaces of foam films and emulsion films is difficult to establish by AFM techniques because of the extremely fast coalescence. Here, we applied droplet-based microfluidics to capture the fast coalescence event under the creeping flow condition and quantify the effect of IGE on the drainage and stability of water films between coalescing oil droplets. The amount of dissolved gases is controlled by partially degassing the oil phase. When the amount of dissolved gases (oxygen) in oil decreases (from 7.89 to 4.59 mg/L), the average drainage time of coalescence significantly increases (from 19 to 50 ms). Our theoretical quantification of the coalescence by incorporating IGE into the multilayer van der Waals attraction theory confirms the acceleration of film drainage dynamics by the van der Waals attractive force generated by IGE. The thickness of the IGE layer decreases from 5.5 to 4.9 nm when the amount of dissolved gas decreases from 7.89 to 4.59 mg/L. All these results establish the universal role of dissolved gases in governing the strong attraction between particulate hydrophobic interfaces.
establish by AFM techniques because of the extremely fast coalescence.

Experimental techniques with high-precision measurements at different length scales can provide temporal and spatial information on interactions between fluid—fluid interfaces and are crucial to quantitative analysis using theoretical models. Experimental studies on interactions between fluid—fluid interfaces include the measurements of (i) film thickness variations with time by thin liquid film micro-interferometry, (ii) time-dependent forces by AFM, and (iii) coalescence time by bubble pair method. The measurements of (i) provide the variations of the local thickness (<0.5 μm) with time and with position but are limited by many uncertainties because of the contamination, evaporation, and thermal or mechanical fluctuations from the environment. The measurements of (ii) provide valuable data of surface forces for comparison with theory, but the procedures are tedious. The measurements of (iii) provide the lifetime of a liquid film. Recently, the microfluidic method equipped with high-speed camera imaging shows its advantages over other techniques because of the faster and more efficient measurements of coalescence process. The small scale and confinement of microfluidics channels minimizes evaporation, thermal or mechanical fluctuations from the environment, and possible contamination. The well-controlled generation and transport of microdroplets provide an ideal (direct) observation of the well-controlled coalescence process under the creeping flow condition matching excellently the modeling approximation.

In this paper, we exploit microfluidics equipped with high-speed camera imaging to measure the drainage time of film rupture (coalescence time) with hundreds of coalescence speed camera imaging to measure the drainage time of well-controlled coalescence process under the creeping contamination. The well-controlled generation and transport of microdroplets provide an ideal (direct) observation of the well-controlled coalescence process under the creeping flow condition matching excellently the modeling approximation.

In this paper, we exploit microfluidics equipped with high-speed camera imaging to measure the drainage time of film rupture (coalescence time) with hundreds of coalescence speed camera imaging to measure the drainage time of well-controlled coalescence process under the creeping contamination.

■ MATERIALS AND METHODS
Deionized (DI) water was obtained from a centralized distillation tap where the conductivity was 1.6 × 10⁻⁷ S/m at 20 °C measured using a conductivity meter (H1S521-02, Hanna Instruments). The oil used was squalene (98%, S3626 Sigma-Aldrich, USA), which is a highly unsaturated hydrocarbon (C₃₀H₆₀) and contains large amounts of dissolved gases (concentration of air soluble in oil is about 10 times dynamic viscosity and equilibrium interfacial tension of the unpurified squalene against water at 20 °C were μ = 0.012 Pa s and σ = 0.0153 N/m, respectively. The amount of dissolved gases was manipulated by gassing or degassing the oil. The oil was exposed to clean air overnight for gassing, and dissolved oxygen was measured to indicate the dissolved gas content. The oil was saturated with air by exposure to open air for 12 h in a small glass dish. Under these conditions, it was very unlikely that any squalene oxidation occurred given that oxidation of squalene only starts after 8 days at 62 °C under continuous air flow. The oil was placed into a vacuum chamber for 2 h to degas. Vacuum was supplied using a central vacuum system. A dissolved oxygen probe (Pro20 Dissolved Oxygen Instrument, YSI, USA) with a polarography sensor was used to measure the dissolved oxygen concentrations in gassed and degassed oils. As the contact between oil and air was inevitable during the measurements, only partial removal of dissolved gases was achieved. The dissolved oxygen concentrations for the gassed and partially degassed oils were 7.89 ± 0.01 and 4.59 ± 0.01 mg/L, respectively. To minimize the fluctuation of dissolved gas content, the oil sample was insulated by the gas-tight glass syringe and microfluidic channels against the open air during the measurements.

A soft lithography technique was used to fabricate the microfluidic device in poly dimethylsiloxane (PDMS). PDMS devices were irreversibly bonded to a glass slide using the air plasma. The widths of main channels and orifices were 100 and 50 μm, respectively (Figure 1). The height of the microchannel was about 30 μm. Flow rates of water and oil were adjusted to be 200 and 10 μL/h, respectively. Droplet generation was performed under optimal wetting conditions. Sequential layer-by-layer polyelectrolyte deposition, by poly-(allylamine hydrochloride) (98%, Sigma-Aldrich, USA) and poly-(sodium 4-styrenesulphonate) (98%, Sigma-Aldrich, USA) was exploited to create stable hydrophilic surfaces in the PDMS microfluidic devices. A final washing step was performed with DI water to remove all trace of contaminations in the microchannels. Details of the surface modification have been reported in our recent publication.

It is noted that the oxygen permeability of a surface-modified PDMS substrate significantly differs from that of the original PDMS. The oxygen transfer barriers at the water/PDMS interfaces can be reduced 250-fold after a 5 min plasma treatment compared with those at the original water/PDMS interface. Furthermore, the layer-by-layer polyelectrolyte deposition on the microchannel wall can add additional diffusive resistance to the gas transfer from the ambient air owing to the lowered permeability of the composite layer. Water and oil were loaded into gas-tight glass syringes and delivered into the microfluidic device via a syringe pump (SPM 100 S-Fluid Pump, Singapore). A high-speed camera (Micro 3, Vision Research) mounted on an inverted microscope (Nikon Ti-E, Japan) was used to record the droplet coalescence images. Droplets were generated using the flow-focusing configuration shown in Figure 1. The frequencies of droplet generation were 16 ± 1 Hz. The average diameters of droplets were 72.2 ± 0.8 μm. The subsequent droplet collision and coalescence were observed at the expansion.

Figure 2 illustrates the quantification of coalescence time from videos. Videos of droplet coalescence were recorded at a frame rate of 13 000 fps and subsequently processed with ImageJ (V1.48, NIH, USA). One hundred coalescence events were recorded for each system to obtain the distribution of the coalescence time. At the before-contact interaction, the two droplets were still far away and approached each other with an approximate constant velocity. When the central film thickness between the droplet surfaces fell below a certain value (~7 μm), the relative approach velocity started decaying exponentially. When the droplets touched each other, as seen on the video frames, the contact interaction started. Typically, the first touching occurred at a central film thickness of Δh = 1 μm which is the resolution of the camera system employed. At these large thicknesses, the before-contact interaction was not affected by

![Figure 1. Microfluidic device for examining the effect of IGE on droplet coalescence: (a) schematic diagram of a flow-focusing microfluidic device. (b) Micrograph of (gassed) droplet generation with a total water flow rate of 200 μL/h and oil flow rate of 10 μL/h.](image-url)
intermolecular forces such as those of the van der Waals interaction and the electrical double-layer interaction. At the contact interaction, the hydrodynamic resistance in the presence of the intervening liquid increased significantly and the film slowly drained under the influence of the capillary and intermolecular forces. The contact interaction normally ended with the film rupture, which quickly merged the droplets into one larger droplet as seen on the video frames.

The outlined qualitative analysis of the before-contact and contact interaction between two droplets has allowed us to define the onset of coalescence at time $t = T_1$ when the first touching between the droplets was detected by observing the relative motion of droplets on the videos frame by frame. This determination of coalescence onset is limited by the optical resolution of the camera system employed which is $\Delta h = 1 \mu m$, as shown in Figure 2. The onset usually happened between two sequential video frames, and hence, the video frame rate (0.077 ms) is the temporal limit of our determination of the coalescence onset. Combining both the spatial and temporal resolutions, we can establish here that $T_1 = t(\Delta h \pm 1 \mu m) \pm 0.077$ ms. Likewise, by observing the first merging of the two droplets on videos frame by frame, we could also define the end of coalescence at time $T_3 = t \pm 0.077$ ms as shown in Figure 2. Knowing the start and end of the coalescence, the measured coalescence time, τ_c was calculated by $\tau_c = T_3 - T_1$. Because of the temporal limit of 0.077 ms is significantly shorter than the coalescence time by 3 orders of magnitude, our determination of the first touching and merging between two droplets from the video images is accurate and acceptable. We will describe the details about our determination of model drainage time in the Theoretical Section.

THEORY

Effect of IGEs on Oil Droplet Interactions. The coalescence dynamics is governed by the film drainage and rupture processes. Because the film rupture is much faster than the film drainage, the coalescence time is principally determined by the drainage process, which is our modeling focus. The film drainage process is determined by fluid dynamics, surface (intermolecular) forces, and surface deformation. When the droplets are still far away from each other, the hydrodynamic interaction because of the motion of the fluid initially dominates the film drainage. As the droplets approach a small thickness, the surface forces start to dominate and control the coalescence process.

We consider the effect of IGE on the drainage and coalescence by applying the van der Waals interaction. The intrinsic gas layer (IGE) at water–hydrophobic interfaces has been observed by neutron reflectivity experiments and analyzed by molecular dynamics simulation. The creeping flow condition in microchannels minimizes hydrodynamic disturbance on the stability of IGE. Therefore, the creeping flow around droplets at the drainage stage in the micro-channels is not expected to significantly disturb the stability of the thin IGE layers. It presents the main advantage of our experiments using the microfluidic device, which is the capable of producing microsized droplets, moving at extremely slow speed. Therefore, we assume IGE as a uniform gas layer. Figure 3 shows the IGEs with thickness, d, confined between the water film of thickness, h, and the oil droplets. Here, we consider different length scales of the oil droplet size (100 μm), film thickness (1 μm) and IGE (1 nm) and apply local planar geometry approximation to the oil–IGE–water–IGE–oil interaction. The van der Waals pressure is calculated using the full dielectric spectra of water and squalene available in the literature (also given in the Supporting Information). The Derjaguin approximation is used to calculate the interaction energy between curved interfaces from their planar counterparts. On the basis of these approximations, the (disjoining) pressure of the van der Waals attraction, Π_{dW} between two oil droplets separated by the water film with IGEs, as illustrated in Figure 3, can be calculated using

$$\Pi_{dW}(h) = -\frac{A}{6\pi h^3}$$

(1)

where A is the Hamaker function of the thickness because of the effect of the speed of light propagating through the water film and IGEs (known as the retardation effect). Applying the generalized Hamaker–Lifshitz theory for the multilayer system gives

$$A = \frac{3k_B T}{2} \sum_{n=0}^{\infty} \int_0^{\infty} x \ln\{1 - \mathcal{J}(\omega_n e^{-x})\} dx$$

(2)

where x is the dummy variable, k_B is the Boltzmann constant, and T is the absolute temperature. The prime against the summation indicates that the zero-frequency ($n = 0$) term is divided by 2. The Matsubara (sample, discrete equally
spaced) frequencies are described by \(\omega_n = 2\pi n k \alpha T/h \) where \(h \) is the Planck constant (divided by \(2\pi \)) and \(\omega_n \) represents the imaginary frequencies. \(\omega = 2\pi n k \alpha /c \), where \(c \) is the speed of light and \(\varepsilon_m(\omega_n) \) describes the dielectric susceptibility of a material \(m \), which refers to the central material across which the layered structures interact (i.e., water phase for this study). \(\sqrt{\mathcal{J}} \) and \(\sqrt{\mathcal{K}} \) describe the diamagnetic reflection coefficients and the dielectric reflection coefficients of a photon passing through the water film and IGEs from one droplet to another, respectively. We consider the formation of IGE (A) with thickness \(d \) next to the oil surface \((O)\) acting across the water film \((W)\) with a thickness of \(h \) and have the following expression

\[
\sqrt{\mathcal{J}(\omega_n)} = \frac{\Delta_{WA} + \Delta_{AO} \exp[-x d \omega_n/(\hbar \omega)]}{1 + \Delta_{WA} \Delta_{AO} \exp[-x d \omega_n/(\hbar \omega)]} \quad (3)
\]

In eq 3, \(\Delta_{WA} \) and \(\Delta_{AO} \) are the diamagnetic reflection coefficients of a photon passing across a single interface between two materials and are given by

\[
\Delta_{jk} = \frac{s_j - s_k}{s_j + s_k} \quad (4)
\]

where the subscripts \(j, k \) refers to the two materials, and the retardation coefficients, \(s_j \), are defined by the following generic expression

\[
s_j = \sqrt{1 - 1 + \varepsilon_j(\omega_n)/\varepsilon_m(\omega_n)} \quad (5)
\]

where \(\varepsilon_j(\omega_n) \) describes dielectric susceptibility of a material \(j \), which refers to the particular material of each layer, that is, oil or air for this study and the dielectric susceptibility of air, \(\varepsilon_A(\omega_n) = 1 \). The oil and water susceptibilities are given in the Supporting Information (Figures S1 and S2). In eq 5, parameter \(q \) is defined as follows

\[
q = \frac{\pi c}{2 \omega_n \sqrt{\varepsilon_m(\omega_n)}} \quad (6)
\]

\(\sqrt{\mathcal{J}} \) in eq 2 can be calculated using eq 3 with symbol \(\Delta \) being replaced by \(\Delta \), which are the dielectric reflection coefficients of a photon passing across a single interface between the two materials and is given by

\[
\Delta_{jk} = \frac{s_j \varepsilon_j(\omega_n) - s_k \varepsilon_k(\omega_n)}{s_j \varepsilon_j(\omega_n) + s_k \varepsilon_k(\omega_n)} \quad (7)
\]

The numerical calculation of eq 2 was performed using the Gauss–Laguerre quadrature. The computational results were obtained using the values of the zeros of the Laguerre polynomial and the respective weights of the 30th order Gauss–Laguerre quadrature. The computation of the outer summation included at least 3000 terms for satisfactory convergence and accuracy.

Incorporating IGE into Droplet Coalescence. The effect of IGE on the droplet coalescence through the film drainage process (Figure 4) is affected by the disjoining pressure \(\Pi(h) \). The van der Waals pressure is a significant component of \(\Pi(h) \) as per the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. Modeling of the film drainage process, \(\partial h/\partial t \), based on the lubrication approximation to the Stokes equation is well described in the literature, and the governing differential equations and initial/boundary conditions are summarized below.

The film drainage rate between two droplets is given by

\[
\frac{\partial h}{\partial t} = \frac{1}{12 \mu r} \frac{\partial^2 P}{\partial r^2} \quad (8)
\]

where \(\mu \) is the dynamic viscosity, \(r \) is the radial coordinate, and \(t \) is the film drainage time. The immobile ("no-slip") boundary condition of eq 8 has been shown to be consistent with AFM measurements of bubble pair interactions on the microscale. It is noted that the inevitable trace impurities tend to arrest interfacial mobility and the mobile interface is difficult to achieve for drops and bubbles in the micrometer size range. The excess pressure, \(P \), inside the film relative to the bulk is given by the augmented Young–Laplace equation

\[
P(h, r) = \frac{2\sigma}{R} - \frac{\varphi}{r} \frac{\partial h}{\partial r} \sqrt{1 + (\partial h/\partial r)^2} - \Pi(h) \quad (9)
\]

where \(\sigma \) is the interfacial tension between water and oil (no IGE) or between water and air (with IGE), and \(R \) is the droplet effective radius. Equations 8 and 9 can be converted into the following dimensionless forms

\[
\frac{\partial y}{\partial \tau} = \frac{1}{12 \rho y} \left(\frac{\partial \rho^3}{\partial \rho} \right) \frac{\partial \rho}{\partial \rho} \quad (10)
\]

and

\[
\rho(y, \tau) = 2 - \frac{1}{2 \rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \rho}{\partial \rho} \right) - \varphi(y) \quad (11)
\]

where \(\rho = \frac{\varepsilon_k}{\varepsilon_m} \), \(\gamma = \frac{\varepsilon_k}{\varepsilon_m} \), \(\varphi = \frac{8}{\pi} \), \(\tau_0 = \frac{\varepsilon_k}{\varepsilon_m} \), and \(\tau_0 = \frac{\varepsilon_k}{\varepsilon_m} \). Here, \(h_0 \) is the initial film thickness at the film center. The capillary number, \(C_a = \mu V/\sigma \), is defined using a velocity constant, \(V \).

At the beginning of film drainage, the two droplets are still far away from each other, and their deformation is negligible. Therefore, their initial shape close to the axis can be approximated by a parabolic profile and described as follows

\[
y(\rho, \tau = 0) = \rho^2 + \rho^2 \quad (12)
\]

In our numerical solution, we define the start of film drainage at \(\tau = 0 \) when the velocity of the droplet surface at the outer boundary of the water film starts to follow the initial condition: \(\frac{\partial h}{\partial \tau} = -V \exp(-t/t_0) \) at the \((\text{initial}) \) film thickness of 7 \(\mu \)m as described in the Experimental Section. It is noted that the velocity constant, \(V \), and the time constant, \(t_0 \), can be accurately determined by fitting the experimental data, that is, \(h \) versus \(t \). An example of the experimental data and fitting

Figure 4. Definition sketch for thin film between two droplets.
where \(\kappa = (0.25^2)^{1/2} \) is measured in nm, \(I \) is the ionic strength, \(\text{pH} = 5.8 \), \(\sigma \) is the surface (zeta) potential of \(7.2 \) mV, \(k_0 \) is the Debye constant measured in \(\mu \)mol/L. For DI water at unadjusted nature, \(\text{pH} = 5.8, I = 2.5 \times 10^{-6} \text{ mol/L} \) because of dissolved CO\(_2\) from the ambient atmosphere. We do not expect any significant change in the charge state of the oil droplet surface as the quantity of gas is decreased, simply because of the nonionic nature of the dissolved gas molecules. We only consider two different charging conditions equivalent to the special cases studied here, that is, (1) water/squalene interface with a surface (zeta) potential of \(-27.5 \) mV\(^46\) and (2) water/IGE (air) interface with a zeta potential of \(-65.0 \) mV.\(^47\) The first condition applies to the degassed system, that is, IGE thickness \(= 0 \), and the second state applies to the nondegassed systems where IGE thickness \(\neq 0 \).

Numerical Procedure. The partial differential equations for the film drainage as described by eqs 10 and 11 together with the initial and boundary equations can be solved numerically by the method of lines with the spatial derivative being approximated using a finite difference scheme. This method yields a system of differential-algebraic equations of index 1, which can be solved by employing a standard numerical package such as ODE15s in Matlab. The boundary condition at infinity is applied at a significantly large distance (typically, at \(\rho = 15 \)), beyond which the film thickness profile does not change significantly. The van der Waals pressure can be numerically calculated explicitly for different film thicknesses and IGE thicknesses, prior to solving the partial differential equation by the method of lines. The numerical data can then be interpolated to provide the van der Waals pressure needed for solving eqs 10 and 11. The interpolation procedure can significantly reduce the computational resources and time.

RESULTS AND DISCUSSION

Experimental Coalescence Time versus Dissolved Oxygen Concentration. Figure 5 shows the measured coalescence time distributions for oil droplets with two different amounts of dissolved oxygen (7.89 and 4.59 mg/L). The measured coalescence times were found to be in the range 15–23 ms for 7.89 mg/L of dissolved oxygen and 44–57 ms for 4.59 mg/L of dissolved oxygen. The Gaussian fits gave the values of corresponding mean of coalescence time, \(\bar{t} \), 18.71 and 50.24 ms, and standard deviation, \(\sigma \), 1.78 and 3.12 ms, respectively. It can be seen that mean coalescence time was

Figure 5. Experimental coalescence time distributions vs dissolved oxygen concentration [DO], displaying significant impact of dissolved gases.
increased with decreased dissolved oxygen concentration. The film rupture is very fast (much faster than the film drainage); therefore, the rupture (time) does not significantly contribute to the coalescence time. The origin of coalescence time distribution comes from different factors, such as droplet size variation, asymmetrical droplet deformation during collision depending on the shear flow, and collision angle. A reported probability distribution of critical film thickness in a quiescent emulsion may contribute to the observed coalescence time distribution.

Simulated Film Thickness versus Time, Radial Position, and Presence of IGE Layer. Figure 6 shows numerical model prediction of film profiles as a function of time for systems with 4.9 and 5.5 nm IGE, respectively. The fastest decrease in film thickness occurs at the film center (i.e., at \(r = 0 \) as shown in Figure 4). The simulation stops at \(T_2 = 50 \) and 20 ms, respectively. The termination of simulation is because the film thickness becomes negative (MatLab crashes as the Hamaker constant, \(A \), does not exist when film thickness becomes negative) at the next time step, respectively, indicating that the film rupture (coalescence) may occur between these two time steps. Typically, the certainty of our modeling results for dimensionless coalescence time is \(\tau = 1 \) (0.03 ms).

To match our experimental determination of coalescence time, we also defined the onset of coalescence from our theoretical calculation at the model film thickness of 1 \(\mu \)m, that is, \(T_1 = t(\Delta h) \) as shown in Figure 6 and in the experimental determination of the coalescence onset. Our certainty analysis described at the end of this section shows that indeed the theoretical onset of coalescence as defined at 1 \(\mu \)m film thickness is accurate. It is because the film drainage process is slow, and the time of film drainage is significantly longer than the model time step of 0.03 ms.

It can be seen in Figure 6 that film drainage rate increases with increased IGE thickness. The model coalescence times (\(t_2 = T_2 - T_1 \)) 18 and 48 ms are close to measured values 18.71 and 50.24 ms for 7.89 and 4.59 mg/L of dissolved oxygen, respectively. The computed coalescence time is consistent with the measured values in Figure 5, where the system with higher amount of dissolved oxygen (larger IGE thickness) has a shorter coalescence time (faster film drainage dynamics).
which in turn changes the disjoining pressure and the film drainage kinetics. The film rupture occurs when the IGE thickness reaches 4.8 nm, above which the coalescence time becomes highly sensitive to the IGE thickness. For example, the coalescence time decreases sharply from 62 to 14 ms when the IGE thickness just increases from 4.8 to 6.0 nm. The computed coalescence times for systems with 5.5 and 4.9 nm IGE are closest to the measured values. Reported neutron reflectivity measurements revealed that the introduction of dissolved gases leads to the increase in IGE thickness.23,36 Our results which show that 4.9 and 5.5 nm IGEs correspond to 4.59 and 7.89 mg/L dissolved oxygen would be consistent with the reported relationship between IGE thickness and dissolved gas concentration.

It is worth noting that because of our experimental resolution, the initial film thickness at the beginning of coalescence is about 1 μm, which is used in determining the coalescence time in our modeling, \(t_c = T_c − T_0 \). It is critical to examine the effect of the initial film thickness used to offset the drainage time zero in the modeling. Table 1 shows the effect of possible initial film thickness to offset zero drainage time on the computed coalescence times for systems with different IGE thicknesses. The change of coalescence time relative to the value at \(\Delta h = 1 \mu m \) is within 3 and 6% when the initial film thickness changes from 1 to 0.7 μm and to 2.0 μm, respectively. The insignificant change in computed coalescence time justifies our choice of initial film thickness (1 μm) to offset zero drainage time in determining the coalescence time.

Table 1. Effect of Possible FilmThickness, \(\Delta h \), Used to Offset Drainage Time on the Computed Coalescence Times for Systems with Different IGE Thicknesses

<table>
<thead>
<tr>
<th>(\Delta h) (μm)</th>
<th>0.7</th>
<th>1.0</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_c = 0.0) (ms)</td>
<td>61.35 (−0.51%)</td>
<td>61.66 (0.00%)</td>
<td>62.42 (+1.22%)</td>
</tr>
<tr>
<td>(t_c = 0.2) (ms)</td>
<td>56.48 (−0.55%)</td>
<td>56.80 (0.00%)</td>
<td>57.55 (+1.32%)</td>
</tr>
<tr>
<td>(t_c = 0.4) (ms)</td>
<td>46.67 (−0.67%)</td>
<td>46.99 (0.00%)</td>
<td>47.74 (+1.60%)</td>
</tr>
<tr>
<td>(t_c = 0.6) (ms)</td>
<td>39.04 (−1.07%)</td>
<td>39.36 (0.00%)</td>
<td>30.11 (+2.56%)</td>
</tr>
<tr>
<td>(t_c = 0.8) (ms)</td>
<td>21.52 (−1.43%)</td>
<td>21.83 (0.00%)</td>
<td>22.58 (+3.44%)</td>
</tr>
<tr>
<td>(t_c = 1.0) (ms)</td>
<td>17.09 (−1.80%)</td>
<td>17.41 (0.00%)</td>
<td>18.16 (+4.31%)</td>
</tr>
<tr>
<td>(t_c = 1.2) (ms)</td>
<td>13.04 (−2.34%)</td>
<td>13.35 (0.00%)</td>
<td>14.10 (+5.62%)</td>
</tr>
</tbody>
</table>

Values in bracket indicate the change of coalescence time relative to the value at \(\Delta h = 1 \mu m \). The subscripts describe the IGE thickness in nm.

CONCLUSIONS

The significant effect of IGE on the droplet coalescence was studied by microfluidics and solving film drainage equations. We observed a faster coalescence between two individual droplets in a microfluidic channel, where the oil is gassed. This observation led us to investigate the effect of IGEs on the coalescence dynamics using the DLVO approach. The IGEs do not retard the electromagnetic wave as strongly as water, leading to a stronger van der Waals attraction. The computed coalescence time show that the gassed systems have faster coalescence dynamics because of the stronger van der Waals and capillary forces. Both the measured and computed results show that the coalescence rate is proportional to the amount of dissolved gases (IGE thickness). In contrast, the coalescence can be prevented in the degassed systems. Our study provides an alternative approach to investigate the relationship between dissolved gases and “hydrophobic” interactions. Essentially, the “hydrophobic” interactions in the presence of dissolved gases are the enhanced DLVO interactions due to the formation of IGEs. In future work, in situ degassing methods will be developed to achieve better control of dissolved gas concentrations.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.langmuir.8b03486.

Documents: Dielectric spectra of water and squalene for calculating the Hamaker function; example of fitting details; and variation of the Hamaker function versus thickness of film and IGE (PDF)

Videos (avi): Combined video compares the coalescence between two 72.5 μm diameter oil droplets in a gassed system (top), and coalescence between two oil droplets (73.0 μm diameter) in partially degassed system (bottom). The video was recorded at 13 000 fps and played at 30 fps (AVI)

AUTHOR INFORMATION

Corresponding Author

E-mail: anh.nguyen@eng.uq.edu.au.

ORCID

Jianlong Wang: 0000-0003-4582-6175
Say H. Tan: 0000-0002-9764-7868
Geoffrey M. Evans: 0000-0003-2036-7814
Anh V. Nguyen: 0000-0001-6703-2291

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

N.-T.N., A.V.N., and G.M.E. acknowledge the funding support from Australian Research Council through projects DP140101089 and DP170100277. S.H.T. gratefully acknowledges the support of the Australian Research Council (ARC) Discovery Early Career Researcher Award (DECRA) (DE170100600).

NOMENCLATURE

A, Hamaker function (l); \(c_s \), speed of light (m/s); \(C \), number concentration of z/z salt ions (—); \(C_a \), capillary number (—); \(d \), IGE thickness (μm); \(e \), charge of an electron (C); \(h \), thickness (μm); \(h_0 \), initial film thickness to offset zero drainage time (μm); \(h_{0,}\text{thick} \), thickness at time zero (μm); \(i \), imaginary number (—); \(I \), ionic strength (mol/L); \(k_B \), Boltzmann constant (m² kg s⁻² K⁻¹); \(n \), dimensionless index used in eq 2, (—); \(p \), dimensionless excess pressure in the film relative to the bulk (—); \(P \), excess pressure in the film relative to the bulk (Pa); \(q \), parameter defined by eq 9 (—); \(r \), radial coordinate in eqs 8 and 9 (μm); \(R_e \), effective radius of droplet (μm); \(s_j \), Retardation coefficient defined by eq 7 (—); \(t \), time (s); \(t_{wp} \), time constant (s); \(T \), absolute temperature (K); \(T_{tr} \), moment of droplet contact (s); \(T_{wp} \), moment of water film rupture (s); \(V \), velocity constant (m/s); \(x \), integration dummy in eq 2 (—); \(x_{wp} \), lower limit of the integral in eq 2 (—); \(y \), dimensionless thickness (—); \(y_{0} \), dimensionless thickness at time zero (—); \(z \), valency of ions (—); \(\varepsilon_{mr} \), dielectric function of water (—); \(\epsilon_j \), dielectric function of material j (—); \(\kappa \), Debye constant (m⁻¹); I,
disjoining pressure due to surface forces (Pa); Π_{BDL} van der Waals disjoining pressure (Pa); μ, water dynamic viscosity (Pa s); $\bar{\eta}$, mean of Gaussian fit (s); ρ, dimensionless radial coordinate ($-$); σ, equilibrium interfacial tension (N m$^{-1}$); $\overline{\eta}$, standard deviation of Gaussian fit (s); τ, dimensionless time ($-$); τ_0 dimensionless time constant ($-$); ω_0, Matsubara frequency (Hz); Δ_α, diamagnetic reflection coefficient between materials j and k ($-$); Φ_0, dimensionless number in eq 16; ψ_0, film surface potential (V); Φ, dimensionless disjoining pressure (Pa); \hbar, Planck constant divided by 2π ($\text{m}^2\text{kg s}^{-1}$); $\sqrt{\mathcal{J}}$, diamagnetic reflection coefficients of a photon passing through the water film and IGEs from one droplet to another ($-$); \sqrt{f}, dielectric reflection coefficients of a photon passing through the water film and IGEs from one droplet to another ($-$).

References

