Spheroids-on-a-chip: Recent advances and design considerations in microfluidic platforms for spheroid formation and culture

Khashayar Moshksayan a, Navid Kashaninejad b, Majid Ebrahimi Warkiani c, John G. Lock d, Hajar Moghadas a, Bahar Firoozabadi b, Mohammad Saidi Saidi a, c, Nam-Trung Nguyen b, e

a School of Mechanical Engineering, Sharif University of Technology, 11155-9567, Iran
b Queensland Micro- and Nanotechnology Centre, Griffith University, QLD 4111, Australia
c School of Biomedical Engineering, University of Technology Sydney, NSW 2007, Australia
d University of New South Wales, EMBL Australia Node in Single Molecule Science, School of Medical Sciences, and ARC Centre of Excellence in Advanced Molecular Imaging, NSW 2052, Australia

ABSTRACT

A cell spheroid is a three-dimensional (3D) aggregation of cells. Synthetic, in-vitro spheroids provide similar metabolism, proliferation, and species concentration gradients to those found in-vivo. For instance, cancer cell spheroids have been demonstrated to mimic in-vivo tumor microenvironments, and are thus suitable for in-vitro drug screening. The first part of this paper discusses the latest microfluidic designs for spheroid formation and culture, comparing their strategies and efficacy. The most recent microfluidic techniques for spheroid formation utilize emulsion, microwells, U-shaped microstructures, or digital microfluidics. The engineering aspects underpinning spheroid formation in these microfluidic devices are therefore considered. In the second part of this paper, design considerations for microfluidic spheroid formation chips and microfluidic spheroid culture chips (μSFCs and μSCCs) are evaluated with regard to key parameters affecting spheroid formation, including shear stress, spheroid diameter, culture medium delivery and flow rate. This review is intended to benefit the microfluidics community by contributing to improved design and engineering of microfluidic chips capable of forming and/or culturing three-dimensional cell spheroids.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

The term ‘multicellular spheroid’, hereafter abbreviated to ‘spheroid’, refers to three-dimensional (3D), well-rounded cell aggregations that consist of multiple single cells (epithelial, mesenchymal, endothelial, etc.). To form spheroids, cells suspended in culture medium are injected into specialized microenvironments in cell culture dishes or microfluidic chips, wherein they establish cell–cell interactions and form compacted, multicellular spheroid structures. A common misconception exists in the literature in relation to the term spheroid. Some loose aggregates or spatial distributions of cells in hydrogel droplets have been termed spheroid cultures, despite lacking cell–cell interactions. Hirschhaeuser et al. and Weiswald et al. emphasized that spheroids are compact and spherical in shape, not loose, easily fragmented cell aggregates [1,2]. The compactness of spheroids endows them with several features analogous to those of in-vivo tumor tissues [3]. These features make spheroids a more suitable tool for in-vitro drug screening assays than two-dimensional (2D)-monolayer cell cultures [4].

In fact, several previous works have suggested that 2D-monolayer cell cultures should be replaced with multicellular tumor spheroids that better recapitulate the in-vivo environment [5–9]. Compared to 2D-monolayers, cancer cells cultured in 3D spheroids are more resistant to anticancer drugs [10–18] and photodynamic therapy [13], reflecting differences in cell secretion, hypoxia, species concentration, and proliferative gradients [8,14,19]. Furthermore, in 2D culture, cell–cell interactions are confined to the narrow common area between cells, while direct contact exists between each cell and both culture medium and the underlying culture substrate [15]. The substrate is usually made of polystyrene or other plastics which are impermeable and extremely rigid, unlike the natural tissue. At the same time, direct cell–culture medium contact in monolayer cultures leads to more significant exposure of cells to nutrients, oxygen, and drugs [20]. This often causes errors in estimating drug dosages required to kill cancer cells in actual patients. More broadly, several studies have illustrated that gene expression patterns are altered in 2D-monolayer cancer cell cultures, whereas results obtained from spheroids better recapitulate the molecular profiles of tumors in-vivo [21,22].

An alternative approach for 3D pharmacological screening is the use of biopsied tumor tissues [19]. Although biopsied samples have historically been used for diagnostic purposes, they can also be employed as informative substrates for ex-vivo drug testing. However, it is challenging to access sufficient cellular material for such testing, mainly from metastatic sites. Furthermore, biopsied tissues experience both oxygen and nutrient depletion following surgical removal, as well as temperature variations and mechanical stresses that may adversely affect the tumor’s microenvironment [23]. As such, 3D biopsied tumor samples lack necessary reproducibility [24] and compatibility with high-throughput drug screening approaches.

Compared to 2D cultures and biopsy samples, multicellular spheroids have several unique features that make them highly relevant models for in-vitro drug screening. First, 3D spheroids establish gradients in proliferation rate that result in creation of a cell layout consisting of three layers (Fig. 1A): i) the proliferating layer – a rapidly proliferating layer comprising the outer 4–5 cell strata (60 ± 10 µm thickness) [17] – which mimics sites adjacent to angiogenesis-induced capillaries; ii) the inactive layer – an inactive and inert intermediate layer, and; iii) the necrotic core: a hypoxic, necrotic core recapitulating tumor sites far from blood (which normally appear in large spheroids with diameters more than 500 µm [3,17,25,26]. Second, 3D spheroids experience reduced drug, nutrient and gas exchange due to limited permeability. This generates steep, physiologically relevant gradients, particularly in large spheroids [1,8,27,28] (Fig. 1B). Third, cell–cell and cell–ECM attachments differ from 2D cultures to 3D spheroids, as well as between 3D spheroid cell layers. These interactions strongly affect cytotoxicity assays. Fourth, spheroids have exponential growth rates [28,29] that correspond to in-vivo data [30,31].

Fifth, chemotaxis–driven cell movements—which exist in tumor tissue in-vivo [32,33]—are also observed in spheroid cultures. Sixth, an acidic environment exists in the core of large spheroids (low pH) due to anaerobic activities and production of lactic acid [34] (Fig. 1C).

Cell spheroids can also be formed from co-cultures (Fig. 1D). These are advantageous for cancer research and regenerative medicine, as they better recapitulate the complexity of the natural
tissue [35]. Such co-culture spheroids may be formed by cancer cells with fibroblasts [36]; human umbilical vein endothelial cells [37], MC3T3-E1 cell [38] and pericytes [39]. Co-culture of hepatocytes and hepatic stellate cells (non-cancerous cells) was also performed in 3D spheroids by Lee et al. [40].

Although non-microfluidic methods [25,28,38,41–55] for spheroid formation and culture have played essential roles in the development of this field, they are less efficient than microfluidic chips at mimicking in-vivo environments. Such non-microfluidic methods have deficiencies such as variable spheroid diameters, laborious handling, and low-throughput, which limit their efficacy in biological research. Moreover, the static microenvironment of a conventional microwell or hanging droplet (HD) culture plate causes the fast depletion of oxygen and nutrients while increasing waste concentrations and osmolality [56]. This directly influences spheroids and subsequent results from drug testing [57]. Other conventional methods such as spinner flasks and stirred-tanks [25,53] are slow approaches that require large amounts of culture medium and space. These methods also result in significant variations in spheroid sizes, as well as harmful effects on cells, mainly due to shear stress [58].

Recent advances in microfluidics have contributed significantly to 3D spheroid research by addressing the aforementioned limitations [59,60]. The significant advantages of microfluidic systems include providing controlled mixing [61], chemical concentration gradients, lower reagent consumption, continuous perfusion and precise control of pressure and shear stress on cells [62]. A remarkable feature of microfluidic chips is that cells can be cultured in a dynamic microenvironment to better recapitulate the tissue environment. Lee et al. reported that hepatocyte cell viability was lower in static cell cultures when compared with dynamic conditions in microfluidic devices after several days of culture [40]. Furthermore, Ruppen and co-workers experimentally demonstrated that cancer spheroids exposed to continuous perfusion of drugs showed higher resistivity than spheroids under static conditions (in a microwell plate) [8]. Indeed, continuous perfusion culture improves oxygen and nutrition supply for cells, as previously predicted computationally [63–67]. It has also been reported that gene expression profiles collected from hepatocyte cells cultured on a microfluidic chip with dynamic flow conditions showed more hepatocyte-specific characteristics than cells in static conditions [68].

There are several review articles in the literature about cancerous and non-cancerous spheroids, analyzing the conventional methods for spheroid formation [69–71], as well as the spheroid potential for high-throughput screening (HTS) [56,72] and regenerative medicine [35]. Among the most recent of these, Hirschhaeuser and colleagues elaborated on the potential use of spheroids in cancer research as well as the importance of co-cultures and cancer stem cell spheroids [1]. In a comprehensive work, Nath et al. investigated conventional methods, novel non-microfluidic methods and on-chip microfluidic methods for spheroid formation, while also highlighting applications of tumor spheroids in cancer research [24]. Weisswald and co-workers discussed four spheroid models currently being used in cancer research, emphasizing their spherical shape and compact configuration [2]. Our group recently published a review on microfluidic methods for spheroid formation in which the biological applications of spheroids in organ-on-a-chip, body-on-a-chip, and organ-printing were discussed [73]. However, we did not address the design considerations or cell trapping strategies for microfluidic systems from an engineering point of view. Other works have reviewed the importance of microfluidics in cancer cell culture and drug discovery [74–80], as well as considering various microfluidic chips enabling 3D cell culture with cancerous or non-cancerous cells [9,81–86]. To the best of our knowledge, there is currently no review article available in the literature discussing detailed engineering features and design considerations for such microfluidic systems.

Herein, we refer to continuous-flow microfluidic chips that both form and culture spheroids in the same device as microfluidic spheroid formation chips (µSFCs). Although there are numerous µSFCs, they can be divided into two principal categories: 1) those using emulsion-based techniques, or 2) those utilizing microwells or U-shaped microstructures. Some other devices under investigation are culture-only chips, meaning that spheroid formation must first proceed using different methods outside the chip, before introduction to the chip for culture and drug efficacy testing [6,8,87]. We refer to these latter devices as microfluidic spheroid culture chips (µSCCs).

This review discusses and categorizes various µSFCs and µSCCs based on their underlying spheroid formation mechanism and culture strategy, with a particular emphasis on engineering aspects. In the following sections, different continuous-flow µSFCs and µSCCs are first reviewed. Then, an introduction to various digital microfluidic methods for spheroid formation is presented. In the second part of this review, design parameters that enhance engineering of such systems are considered. Overall, this review collates design considerations and ideas from an immense body of published literature to support researchers in optimizing design and use of µSFCs and µSCCs.

2. Continuous-flow microfluidic spheroid formation and culture

Microfluidic platforms can be utilized for long-term perfusion cell culture while maintaining high cell viability, as shown in previous studies [6,18,39,40,88,89]. Cell viability depends on the continuous supply of nutrients and oxygen, removal of waste products, low shear stress and the biocompatibility of materials. A number of characterization assays such as live/dead cell staining, drug testing, molecular profiling (e.g., FISH), as well as chemical, mechanical [90] and electrical stimulations are possible within microfluidic chips. These devices can also be coupled with on-chip tools for precise monitoring [91] and measurement of pH, oxygen level [92] and cell-secreted biomarkers [93], enabling a myriad of applications.

The µSFCs are designed to enhance the spheroid formation process by: providing size control; allowing rapid aggregation; requiring minimal interaction between the user and the device, and; replacing manual handling with engineered and automated procedures. These important capabilities have been achieved with the aid of transparent and biocompatible materials, in particular, poly(dimethylsiloxane) (PDMS) [94]. Given its hydrophobic nature and gas permeability, PDMS has been shown to be an ideal material for both spheroid formation and long-term perfusion culture with minimum cellular attachment [17,94,95]. Nonetheless, treatments with various chemical materials are frequently used to further enhance PDMS hydrophobicity. These materials include polyvinyl alcohol (PVA) [17], bovine serum albumin (BSA) [40,88] and Speronic F-108 [96]. Coating microchannel walls with a layer of poly (hydroxyethyl methacrylate) hydrogel has also been shown to optimize spheroid formation [13]. Contrastingly, as required for specific applications [94,97], PDMS also can become hydrophilic by using plasma treatment.

2.1. Microfluidic spheroid formation chips (µSFCs)

The µSFCs can be categorized into two main groups that differ in spheroid formation procedure: emulsion-based spheroid formation and; microwell or U-shaped microstructure-based spheroid formation. Both have specific advantages and limitations that are
briefly discussed in the following sections. First, the emulsion-based techniques are considered to evaluate the most critical parameters involved. Second, microwell and U-shaped microstructures are discussed along with their working principles and challenges. Moreover, the hydraulic-electric analogy for proper design of μSFCs is introduced.

2.1.1. Emulsion-based techniques

Flow-focusing droplet generators have been the subjects of many studies due to the uniformity in droplet and spheroid sizes produced by them, as well as their high-throughput continuous operation [98]. Single- (Fig. 2A) [36,99,100], double- (Fig. 2B) [101,102] and triple- (Fig. 2C) [98] emulsion droplet generation techniques have been utilized in μSFCs. Flow focusing devices for this application exist in either axisymmetric [101] or non-axisymmetric [36,98,103] configurations. The nature of this method facilitates the fast production of microdroplets and thus high-throughput spheroid formation (HTSF). Droplet generation frequencies up to 50 droplets per second [104] and 200 droplets per minute have been achieved using collagen [99] and alginate [105] hydrogels.

Several liquids are used for cell encapsulation and spheroid formation in μSFCs with different configurations around the core flow. Cell suspension (CS) in oil (O) emulsion (i.e., CS/O) [106] and cell-dispersed hydrogel (Gel) in oil (i.e., Gel/O) droplet generation [36,107] are among the single-emulsion methods which are widely used. Cell suspension in oil in culture medium (CM) (i.e. CS/O/CM) [102] and CS/Gel/CM [101] are double-emulsion techniques. The CS/Gel/CM double-emulsion technique can enhance droplet uniformity and entrap cells firmly within the droplet. It is facilitated by encapsulating the cell-containing core droplet within an alginate hydrogel shell [101,106] that acts as an impermeable barrier with respect to the cells. However, in contrast to the CS/O/CM method, gelation is required in the CS/Gel/CM method. Using mineral oil as a barrier instead of hydrogel enhances oxygen transport to the droplets, reflecting the higher permeability of mineral oil to small molecules [109]. Although these barriers produce nutrient concentration gradients within the droplets, they act as an interface between the culture medium and the encapsulated cells which protects cells from high shear stress.

2.1.1.1. Hydrogels in emulsion spheroid formation. High proliferative cancer cells quickly aggregate with a spheroid shape after being encapsulated in a hydrogel droplet [98]. However, other cell types such as mesenchymal stem cells are not able to form spheroid aggregates in a solid-like hydrogel [58]. The high concentration of alginate and agarose [110] causes higher stiffness and disturbs cell proliferation [108]. Yu et al. reported that alginate concentrations around 3% (v/v) and higher reduce the proliferation of encapsulated tumor cells within droplets due to high rigidity [108]. They found that alginate concentrations of 1.5% (v/v) to 2% (v/v) are suitable for spheroid generation, permitting cell proliferation while still entrapping cells firmly within droplets – despite low alginate concentrations.

Fig. 2. Emulsion-based techniques for spheroid formation. (A) (a) Schematic illustration of a single-emulsion (Gel/O) droplet generator for the formation of uniform water droplets containing different concentrations of alginate and cells dispersed in mineral oil in a flow-focusing microfluidic device; (b and c) an overview and composition of the actual microfluidic device. Reproduced with permission from [100]. (B) (a) Schematic overview of a microfluidic device for multicellular spheroid production. The system is composed of an external fluidic injection system, coextrusion microdevice, and off-chip gelation bath; (b) Confocal image of an alginate capsule stained with high-molecular-weight fluorescent dextran; (c) Plot of the capsule aspect ratio as a function of the flow rate; and (d) Phase-contrast pictures of individual capsules encapsulating cells. Reproduced with permission from [101]. (C) (a) Schematic overview of a three-dimensional microfluidic system for generation of core-shell microparticles for efficient formation of cell spheroids; (b) Representative phase-contrast micrographs of individual capsules encapsulating cells. Reproduced with permission from [98].
The solid core formed after droplet gelation not only hinders cell proliferation but also prevents cells from establishing the cell–cell interactions necessary for compact spheroid formation. However, this problem is resolved by the aid of matrigel. As matrigel is digestible by cells, the solid core is degraded after a short time and the adverse effects disappear [107,111]. As a result, mixtures of alginate and Matrigel (1:1 v/v) for cell-dispersed core flow generate droplets with enhanced droplet uniformity as well as yielding spheroid formation in a shorter time [107,112].

Collagen, a typical hydrogel existing in our body, has priority over other hydrogels for cell culture as it can properly mimic the in-vivo microenvironment. In conventional methods, collagen droplets are made via emulsification [113] or simple droplet dispensing [114–116]. As a consequence, the resulting droplets have non-uniform diameters due to the coalescence of microdroplets before gelation. Cell viability assays also indicate that centrifugation-aided collagen droplet formation causes cell death in droplets as a consequence of centrifugal and compressive forces exerted during the microsphere extraction process [99].

Microcapsules having liquefied alginate in the core, in addition to poly (L-lysine) and alginate as barriers, are also utilized for spheroid formation. In these methods, the alginate bead that fills the core is liquefied with tri-sodium citrate treatment [117], despite such treatment being reported to perturb live encapsulated cells [98]. Another drawback is the excess pressure and mechanical stress imposed on spheroid cells by the alginate-poly (L-lysine) barrier, which adversely affects cell proliferation and final spheroid size [98,101]. Sodium citrate is also used for liquefying alginate microdroplets after gelation to facilitate the retrieval of spheroids formed within the droplets [100].

2.1.1.2. Droplet stabilization. Chan et al. reported that the use of amphiphilic surfactants (i.e., showing both hydrophobic and hydrophilic behaviors) helps to maintain droplet stability [102]. They also reported an acceleration in spheroid formation by decreasing the duration time from one day to 150 min. Moreover, they monitored spheroid formation using labels for collagen type I and laminin, as well as immunostaining for E-cadherin and integrin-α5β1 to assess cell–cell and cell–matrix interac- tions and adhesions. Kim et al. used glycerol to adjust viscosity in the cell suspension constituting the core flow in an on-chip CS/Gel/CM spheroid generation method [98]. Given that viscosity was increased, the cross-sectional geometry of the droplet took a more circular form. However, glycerol had devastating effects on
cell viability, reducing it to just 13% in a glycerol concentration of 20% [98]. Using viscous oil as the droplet shell instead of a hydrogel obviates the need for viscosity adjustments in CS/O/CM method [102]. Adding Span 80 surfactant to the mineral oil further stabilizes the droplets formed in the CS/O single-emulsion technique [99,105,107].

2.1.1.3. Flow rate. In emulsion-based techniques, droplet generation frequency and droplet diameter are adjustable by varying the flow rates. Smaller droplets are normally obtained by increasing the rate of sheath flow [102]. In addition, the thickness of the capsule shell can be adjusted by changing the flow rates of different phases [101] or varying the channel dimensions of the microfluidic device [102]. In fact, the shell thickness is related to the ratio between the volume flow rates of the sheath and core flows [98]. Flow rate is also crucial for droplet anchorage after droplet generation [36,103]. The flow should be adjusted to allow the droplets to settle in traps designed for spheroid formation and culture. High flow rates push the droplets towards the outlet; whereas, low flow rates cause channel clogging in some μSFCs [36,104].

2.1.1.4. Droplet anchorage and retrieval. Proper droplet anchorage is crucial for on-chip gelation, culture perfusion, spheroid formation and drug screening. Multiwell plates [100,105], Petri dishes [107] and cell culture flasks [108] have frequently been used for droplet storage. However, these platforms do not inhibit droplet coalescence. Several microfluidic chips have been designed which can facilitate high-throughput droplet anchorage with hundreds of anchoring sites, solving this problem. One configuration contains a vast number of droplet arrays. Each array has tens of anchor sites which resemble two out-of-phase sinusoid functions placed in parallel (Fig. 3A) [36,103].

Droplets squeeze through the narrow passing throats one by one to reach the downstream trap, driven by pressure exerted on them via pumping. The design principles in this configuration are based on droplet size, viscosity and surface tension, which together shape device performance. The flow rate and the resulting pressure gradient along the channel also play essential roles in avoiding droplet coalescence. Although droplet coalescence has been prevented by this method, both throat and trap sizes must be designed to properly facilitate droplet squeezing and anchorage without droplet differentiation.

McMillan et al. fabricated a μSFC having a high-throughput droplet storage array consisting of 2000 droplet sites that suited radiation assays performed on tumor spheroids (Fig. 3B) [103]. However, it was not possible to have a culture medium or drug solution flow through the microchip since the design had been set for radiation assays. Sabhachandani et al. generated a similar

Fig. 4. U-shaped microstructures in μSFCs: (A) A pneumatically actuated μSFC containing U-shaped microstructure arrays. It contains eight chambers for high-throughput cell trapping and spheroid formation. (a) The two images depict the microchip fabricated out of PDMS; (b) Top and sectional view of one of the U-shaped microstructures comprised of three layers; (c) Schematic diagrams of high-throughput cell loading and localization within the chip. Reproduced with permission from [128]. (B) Permanent U-shaped microstructures. (a) The configuration of the alginate encapsulated beads instantly after droplet formation, in a Petri dish; (b) This figure depicts the droplets four days after being trapped in the microsieve structures for spheroid formation. The gaps between the microsieves enable proper diffusional nutrient and gas exchange. Reproduced with permission from [18]. (C) A μSFC containing permanent U-shaped microstructures. (a) A representation of an in-vivo tumor provided by drug molecules from blood vessels; (b) The microchip constructed by PDMS/glass slide; (c and d) the flow of culture medium towards the microstructure pushes the cells inside. Drug, nutrient and waste molecules are perfused to the trapped cells with the flow through the 2 μm gap. Reproduced with permission from [121].
design that was able to facilitate a continuous flow of medium and drug [36]. The only possible problem remaining with this anchorage design is flow blockage. As the medium flows continuously, the induced pressure gradient pushes droplets downstream, such that a gelled droplet may be pushed to the outlet of its trap, thereby blocking the flow. The presence of a gap between traps and the bottom surface of the top PDMS layer can eliminate this problem by permitting continued medium flow. In another design by Tomasi et al., the chip contained over 5000 microwells for droplet storage [104]. They used V-shaped trails to distribute generated droplets homogeneously over the anchoring microwells (Fig. 3C). The strengths of this device include rapid droplet generation, with 10–50 droplets formed per second – filling all 5000 available anchors in less than 10 min.

Immediately after droplet formation, the surrounding sheath fluid usually has to be removed and replaced with culture medium or drug solution. In one design this was achieved through the application of magnetic forces using magnetic nanoparticles [105] immediately after on-chip droplet formation. Nanoparticles were dispensed into the cell suspension to cause a deviation in the droplets’ path within the magnetic field. Consequently, droplets leave the oil stream and enter the culture medium, enabling their retrieval (Fig. 3D). Wang et al. guided microdroplets in oil to a microwell on the chip which contained culture medium in its lower half (Fig. 2A) [106]. Thus, after sedimentation, droplets were easily extracted from the culture medium for further use.

2.1.2. Microwells and U-shaped microstructures

In the last decade, a large number of microfluidic platforms have been designed for spheroid formation and culture using microwells [6,7,39,96] or U-shaped microstructures [16,18,118–121] embedded in the device. These structures are designed to help spheroid generation within a shorter period [122,123], with controllable and uniform diameters [124,125] and a compact spheroid shape [17,126]. Recently, we employed numerical simulations to find the necrotic core and hypoxic zone in a U-shaped system containing spheroid [126] and compare the performance of such system in microfluidic platforms with either U-shaped barrier or microwell structure containing cell aggregates in toroidal shape [127].

U-shaped microstructures function either temporarily, using pneumatic actuation (Fig. 4A) [119–121,128], or permanently within the device (Fig. 4B–C) [118,121]. Liu et al. fabricated μSFCs which had temporary U-shaped pneumatic microstructures for high-throughput spheroid formation, culture assessments and drug efficacy tests (Fig. 4A) [120,128]. A large number of these U-shaped microstructures are usually embedded (e.g. 360 [120], 28 [18], 512 [129]) in each chamber of μSFCs to trap most of the cells introduced into the chip [18,118,120,121,128]. Spheroid diameters depend on microstructure size, while the relative position of microstructures is essential for efficient cell trapping. Kim et al. investigated cell trapping efficiency and related design optimization using computational fluid dynamics (CFD) simulation first, followed by experimental validation [130]. The detailed information regarding CFD simulations of U-shaped microstructures can be found in the recent work of Zhang et al. [129].

Hydrogel droplets can also be trapped within these microstructures [18]. Yu et al. designed a μSFC, named microsieve, containing triple-portion U-shaped microstructures to trap cell-containing alginate droplets (Fig. 4B) [18]. Since cells were trapped within a hydrogel droplet, diffusion of oxygen and other species to the cells from culture medium was limited. Therefore, the design was enhanced by introducing junctions between three microstructure portions, thus facilitating better oxygen and nutrient transport.

The fluid flowing towards a microstructure creates a stagnation region in its front. Consequently, species transport is facilitated via diffusion rather than a convective mechanism [121]. This stagnation region exerts forces on cells residing in the microstructure, thereby inducing more cell–cell interactions and faster spheroid formation [121]. Hence, spheroid formation time can be adjusted by flow rate, since the formation is affected by the stagnation pressure existing in front of the microstructure. However, high flow rates cause cells to escape from the narrow space between the microstructure edge and the PDMS slab [120,121]. On the other hand, to hold spheroids within microstructures the flow should be sustained, thereby maintaining the necessary stagnation pressure [121]. Otherwise, the spheroids exit U-shaped microstructures and flow towards the outlet (Fig. 4C).

Microwell-based μSFCs have been utilized more than other techniques due to their simplicity and ease of operation [131–133]. In general, a microwell-based μSFC needs a specified number of microwells and a microchannel network to deliver the culture medium (Fig. 5A–E). For spheroid generation, the cell suspension is introduced at the inlet, usually with a cell density of 105–107 cells/ml [6,68,96], depending on the cell type (Fig. 5A). To achieve uniform cell seeding in microwells and uniformly sized spheroids, the cell suspension should fill the device entirely before cells begin to deposit in the microwells. The cells take several minutes to deposit on microwell bottoms and channel floors (Fig. 5B). Excess cells that did not enter microwells should be rinsed out of the chip to avoid subsequent channel clogging [7,68,134] (Fig. 5C). After that, cells begin to adhere to each other, form a spheroid (Fig. 5D), and continue their growth with a continuous or intermittent supply of fresh culture medium (Fig. 5E). Using more than one inlet and microwell-contained channel allows testing drugs with various concentrations, cell types and different spheroid sizes on a single microfluidic chip [134].

Microchannels should be designed in a way that can prevent undesirable spheroid escape from the microwells (Fig. 6A–F). Choi et al. [68] reported cells and spheroids escaping from the microwells when high flow rates were utilized in the main channel. Experimentally, it has been indicated that increasing the channel width [134] or decreasing its height [17] can limit spheroid escape. However, sometimes it is required to retrieve spheroids for flow cytometry analysis, stem cell differentiation-assays, etc., which necessitates spheroid ejection from the microwells. Rouss et al. performed a CFD study to obtain the flow rates necessary to deliver a sufficient lift force on spheroids to drive their exit from microwells [65]. However, these flow rates might create high shear stress on cells while pushing them upward. Therefore, an acceptable shear stress threshold (1 Pa) was applied as a constraint when calculating optimum geometrical parameters based on numerous simulations [65].

In order to equalize flow rates across several microchannels, flow resistance must be the same through all of them. Therefore, if channels have the same width and height, their lengths must also be equal to satisfy this requirement. Simious channels, often used in concentration gradient generators (CGGs) as mixing channels, are appropriate to adjust channel length precisely within a small area of the chip. Such channels can thus be applied for flow control purposes rather than including valves within microfluidic chips [88,135].

Desired flow rates must also take into account the number of cells existing in the culture environment and their corresponding requirements for oxygen, nutrients and other factors. This is complicated by the fact that various species have limited solubility in water at any given temperature. For instance, this value is 1 gr/cm³ [136] for glucose and 0.007 gr/cm³ for oxygen in water at 37 °C [137]. Hence, one should consider both the amounts of these species present in culture medium and the corresponding uptake rates achieved by cells. However, these calculations are not sufficient to ensure that hypoxia or anoxia are avoided in the center of a spheroid cultured on a chip. The limited diffusion of glucose
and oxygen to spheroids, combined with the specified geometry in which the spheroid is cultured, make the problem unpredictable. Thus, mathematical and numerical analyses combined with experimental investigations are needed [64-66,138-140].

A major drawback of microstructure- or microwell-based μSFCs is their limited application for HTS. In other words, simultaneous drug tests with various combinations and concentrations have rarely been carried out on a single μSFC due to the lack of a suitable microchannel network. Most μSFCs, while achieving HTS capacity, permit only one concentration of a drug, or one combination of drugs, to be applied to spheroids at any given time. Therefore, one has to employ several chips for each single drug concentration. Recently, Kwapiszewska et al. [6] and Zuchowska et al. [141] designed microwell-based μSFCs that facilitate simultaneous exposure of spheroids to different concentrations of the 5-fluorouracil anticancer drug. This advancement was achieved by coupling the μSFC with a CGG. In this design, microwells were arranged in a configuration compatible with commercial microplate readers for automated monitoring (Fig. 6D).

2.1.2.1. Hydraulic-electric analogy. The hydraulic-electric analogy has helped microfluidic engineering integrate microfluidic chips with pressure drop adjustments and precise flow rates [142]. In designing μSFCs [16,39,88] and μSCCs [8], the hydraulic-electric analogy has been used to direct the path of suspended cells or spheroids to desired on-chip locations (i.e., microwells, cell traps, etc.). By using this method, channel width, height, and length are computed to achieve desired flow rates and pressure drops. As the flow velocity and length scales are very small in microfluidic chips, the Reynolds number is usually below unity [143], thus ensuring a laminar flow regime [144,145]. This fact helps designers efficiently compute flow rates, resistances and pressure drops by using the Poiseuille pressure drop equation in microchannel networks [146,147]. In the hydraulic-electric analogy, the electric potential difference is analogous to the pressure drop, electric current corresponds to flow rate, and electrical resistance plays the role of the flow resistance [142]. This analogy introduces an acceptable method for flow calculations in biological microfluidics [8,11,16,88,135,148].

One design used two sets of channels named trapping and bypass. The channels had different resistances in order to divide flow rates such that the larger part of the fluid passed through the trapping channel while a small amount of fluid entered the bypass channel. Spheroids reaching the split in the channel are forced by the upstream flow to enter the trapping channel, thereafter stopping in the trap neck and blocking the flow inside that channel. This prevents further spheroids from entering, such that these move into the bypass channel and get trapped in the next empty trapping channel [8,11]. McMillan et al. [149] designed a nearly identical device to trap cell-containing alginate droplets instead of spheroids. This mechanism has recently been adapted for single cell trapping by modifying the geometry and fluidic parameters [150].

In other works by Kim et al. [88,135] and Ruppen et al. [39], the spheroid formation was achieved by driving a cell suspension towards individual microwells for sedimentation trapping (Fig. 6E and F). In this design, each microwell is supplied by a dedicated microchannel. This contrasts with typical microwell-based μSFCs, wherein one microchannel usually feeds tens of microwells [68,134]. Nonetheless, flow rates and geometries must still be optimized such that cells can sediment without easily escaping through the exiting channel. For instance, if the channel height equals the entering one, most cells pass through the microwell and are lost. Therefore, the exiting channel has a reduced height relative to the entering one, enhancing trapping. Kim et al. [88,135] used 190 μm and 25 μm while Lee et al. [16] utilized 300 μm and 5 μm for the entering and exiting channel heights, respectively.

Cells start to sediment as soon as they enter the chip, with the sedimentation rate depending on cell diameter as well as fluid properties such as kinetic viscosity and density. To promote successful cell trapping, it is required that cells roll on the channel floor when arriving at the microwells [135] making the average flow velocity a significant parameter. Kim et al. [135] performed a numerical simulation for modeling this phenomenon by considering the cells to be 10 μm in diameter and taking cell-wall and cell–cell interactions into account. According to the flow rates and channel dimensions reported by Kim et al. [88,135], the suitable average flow velocity can be calculated to be approximately 300 μm/sec [88] and 500 μm/sec [135] in the channels. With these velocities, no shear stress-induced cell damage was declared; meanwhile, cell trapping was carried out successfully [88,135].

Lee et al. designed a hydrostatically-driven flow μSFC based on the hydraulic-electric analogy [16]. After introducing the cell suspension at the inlet, the device was tilted by 90° to promote cell sedimentation into the trap chambers for spheroid formation. The authors adjusted the height of the exiting channel of the trap chamber such that its flow resistance was approximately one thousand times larger than that of the main channel. Therefore, the flows conducted through the trap chambers were identical. After spheroid formation, the spheroids could be perfused under continuous culture medium flow or retrieved by changing the flow direction in the device (Fig. 16D) [16].

2.1.3. Other microfluidic chips for spheroid formation
In this section, we describe other microfluidic designs for spheroid formation and culture including pyramid microwells, porous membranes, and microrotational flow. Their pros and cons
are discussed briefly to help designers create their microfluidic chip more efficiently.

Torisawa et al. designed a µSFC containing pyramid-shaped microwells with holes at their vertex to facilitate on-chip scanning electrochemical microscopy (SECM) (Fig. 7A) [151]. The spheroid formation took place in the microwells first. Afterwards, the microwells were inverted to perform SECM analysis while spheroids were hanging from the microwells, a configuration resembling the HD method.

Porous membranes have been used in µSFCs to dictate cell patterning necessary for on-chip mono- [155] and co-cultured [156] spheroid formation. Fig. 7B shows a two-layered hydrostatically-driven µSFC in which a porous membrane was placed between the two layers to filter cells behind its pores. Each layer of the µSFC had microchannels, some of which were connected to microchannels within the other layer using the porous membrane [156,157]. Hsiao et al. placed the spheroid formation chambers lateral to the main channel of the top layer, facilitating single spheroid formation and enhancing size uniformity [156]. Ku et al. used the same principle for spheroid formation with pores being 10 µm in diameter while in other similar devices, the pore size was 5 µm [155]. The cell trapping efficiency of the device was at most 97% which signaled its low cell waste. Recently, we have shown that 3D spheroid culture is possible on electrospun PDMS nanofibers [158]. By integrating this membrane in a microfluidic platform, several biological studies on 3D cell culture samples would be feasible.

Fig. 6. Parts A to D depict microwell-based µSFCs in which each microchannel feeds several spheroids. In the parts E and F each main microchannel branches into several microchannels which individually feed each microwell. (A) A graphic demonstration of a microchip for MTS formation and drug screening. (a) Each microchannel feeds a 3 x 11 configuration of microwells. The formation of a cell spheroid on a microwell displayed at the bottom left, and a micrograph of the microwell-array of the chip is shown at the bottom right; (b) Top and side visions of the microchip. Reproduced with permission from [134]. (B) A microwell-based µSFC for evaluating the efficacy of Photo Dynamic Therapy on tumor spheroids. (a) Graphical representation of cells trapping in a microwell; (b) Schematic of cell aggregation after 1 day; (c and d) The structure of the 3D microfluidic chip; (e) The fabricated chip that has 1024 microwells within a main area of 2 cm by 2 cm. Reproduced with permission from [133]. (C) Photographs of a two-layered µSFC, and the magnified view of the square spheroid culture microwells in the inset. Reproduced with permission from [96]. (D) A µSFC integrated with a CGG to facilitate high-throughput drug tests. Each drug is delivered to three microwarbars in series, each containing 14 microwells. The distance between microwarbars was designed such that the µSFC is compatible with conventional plate readers. Reproduced with permission from [6]. (E) A microwell-based µSFC having (a) Cells are trapped within each microwell due to the difference between the inlet and outlet microchannel heights; (b) Top-view of two microchannels filling with color food dyes (yellow and red). The length of the microchannels delivering cell suspension to each microwell is equal to facilitate uniform-sized spheroid formation; (c) The microchip's mold made of epoxy. Reproduced with permission from [39]. (F) A microwell-based µSFC designed using the hydraulic-electric analogy to facilitate spheroid culture of the same cell numbers in all the microwells. (a) It contains one inlet for cell seeding, eight inlets for drug perfusion and eight outlets; (b) Plane representation of the microchannel network in which the flow rates are adjusted by the hydrodynamic resistance of the microchannels; (c) The uniform flow rates in each microchannel estimated by hydrodynamic simulation. Reproduced with permission from [88]. [For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.]
Fig. 7. Other types of μSFCs: (A) A μSFC compatible with SECM due to silicon pyramid-like holes. (a) The cross-section of the microchip is depicted and its layers are shown; (b) The figure shows the microchip after spheroids have been formed in the structures resembling HDs; (c) The SECM measurement was done on the microchip while it was inverted on a glass slide to avoid spilling of the measurement liquid. Reproduced with permission from [151]. (B) Cell trapping behind a porous membrane for spheroid formation, facilitated by the flow of the cell suspension through the membrane. The spheroid formation is carried out by: (a) cell seeding, (b) cell trapping behind the porous membrane and (c) cell aggregation. (C) Microrotational flow in a microchannel having two inlets and outlets embedded in a three-layered μSFC. The inlet and outlet channels are tangential to the cylinder in the middle layer and the upper layer, respectively, to promote rotational flow. Reproduced with permission from [152]. (D) Spheroid formation by the aid of 3D acoustic tweezers. (a) The overall view of the microchip is shown; (b) Diagram of Gorkov potential field inside the cavity. The balance among the acoustic radiation force, microstreaming drag force, gravity and buoyant force aggregated the Cells; (c) First, the cell suspension is injected. Then, spheroids are formed in the microchannel where the potential field exists; the generated spheroids are then placed in a Petri dish. Reproduced with permission from [10]. (E) Cells are entered through the central inlet channel and trapped in the central chamber to form spheroids. The chamber is separated from the surrounding flow, which comes through the side inlets, by micropillars which are located close to each other. Reproduced with permission from [153]. (F) HD spheroid formation in an HD plate: (a) introduction of the cell suspension within the holes; (b) formation of the droplet by the capillary forces, (c) creation of an HD, (d) cell aggregation, (e) spheroid formation after one day. Redrawn after [54]. (G) an HD based μSFC. (a) The figure depicts (1) the pneumatic chamber is pressurized to create a flow from the central HD to the right HD (2). (3) The left valve, which prevented backflow, is now open while the pneumatic chamber is unpressurized. Fig. 4 shows the spheroids in the HDs; (b) an image of the HD based μSFC which is colored by food dyes. Reproduced with permission from [154].

Microrotational flow was proven to induce spheroid formation in microfluidic chips by Ota et al. [122,123,152] (Fig. 7C). This method mediated spheroid formation with acceptable size controllability and short times – as rapidly as 120s. Spheroid sizes ranging from 130 to 430 µm with a standard deviation of less than 17.2% can be achieved by changing cell concentration in the cell suspension entering the device. In the first design, spheroids could be cultured only for one day because the spheroids started to exit from
Fig. 8. The figure depicts various μSCCs. (A) A μSCC for culturing olfactory ensheathing cell spheroids. (a) This device consists of two inlets: one large well (6 mm) for culture medium and a smaller one (2 mm) for spheroid injection. Parallel microchannels, 80 μm in width for spheroid trapping, are embedded within the device through which the culture medium passes and feeds the spheroids; (b) the device also integrates lateral chambers for trapping unwanted air bubbles entering the device. Reproduced with permission from [87]. (B) The microchannels are designed using the hydraulic-electric analogy in which the trapping channel has less flow resistance than the bypass channel before spheroid trapping. Reproduced with permission from [8]. (C) A hydrostatic pressure-driven μSCC containing two units each having one perfusion and four loading microchannels. (a) Medium reservoirs are situated at both ends of each perfusion microchannel; (b) the spheroid culture chamber is placed at the intersection of the loading and the perfusion microchannel; (c) to load spheroids, the device is slanted with respect to axis No. 1 in figure (a); (d) After spheroid loading into the chambers, flow is created by periodic tilting of the device around axis No. 2 to obtain hydrostatic pressure difference between the inlet and outlet. Reproduced with permission from [89]. (D) A μSCC consisting of five parallel sinus microchannels each of which contains five microwells for sedimentation trapping of the loaded microtissues or spheroids. (a) Loading microtissues or spheroids into the chip by a micropipette; (b) The microchip with five independent microchannels each has five equally-spaced microwell traps (red); (c) side view of the microtissue in the microchannel which is reaching the microwell trap; (d) the microchip made of PDMS with five inlet reservoirs. Reproduced with permission from [139]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the chambers afterwards [123]. In the second design, the device was integrated to facilitate HTSF [122]. Even though spheroids remained in the chambers for more than one day, unwanted cell aggregates still existed and had to be removed by a filter. This indicates that a fraction of cells introduced to the device did not take part in the spheroid formation process and were therefore wasted. Another deficiency of this method is that it requires a large volume flow rate of culture medium (1.2 ml/min) in comparison with microwell-based techniques [122,152].

Sound waves were recently used by Chen et al. [10] in a novel μSFC that integrated 3D acoustic tweezers (Fig. 7D). The device could simultaneously form 150 spheroids within less than 30 min using various cell lines including HepG2, HEK 293, SH-FY5 and HeLa cells. The rapidity of spheroid formation limited the necessary exposure time of cells within the acoustic field, reducing cell death caused by sound waves.

A microfluidic design exists that provides stable-state perfusion to spheroids [159] or cell aggregates [153,160] while avoiding shear stress on the cells. In this design, micropillars were used to minimize the direct exposure of spheroids to the flow of culture medium, confining the transport phenomena to diffusion – as occurs in in-vivo microenvironments. To culture spheroids in this chip, pre-formed spheroids were inserted into the center channel and then the flow of culture medium was established through the side channels [159] (Fig. 7E).

Tung et al. [54] designed a novel HD platform (Fig. 7F) to optimize the procedure traditionally used for HD spheroid formation [161]. The platform was compatible with liquid handling robots as well as conventional 384 & 96-well plate readers utilized in high-throughput drug screening. Although these advancements were significant for the spheroid formation and culture experiments, inherent design characteristics limit the capacity to properly mimic in-vivo microenvironments. Liquid evaporation within the wells and droplets leads to increased osmolality that can negatively impact cell viability [54,162]. Specific amounts of culture medium should be interchanged manually with the delicate droplets every day to compensate for the evaporated liquid.

Recently, the inability to establish dynamic microenvironments in HD platforms has been solved by novel HD-based microfluidic designs [154,163]. In a valuable work by Yazdi et al. [154], both pulsatile and steady-state flows were created through the device by pneumatic actuation, mimicking the in-vivo microenvironment and thereby enhancing the culturing of human cardiac iPSC-derived spheroids (Fig. 7G). These platforms enabled closed-loop circulation of medium, but still required the addition of fresh culture medium to compensate for evaporation [163].

2.2. Microfluidic spheroid culture-only chips (μSCCs)

μSCCs are designed to provide suitable microenvironments for cell spheroid culturing and drug tests. Importantly, cell spheroids must first be formed using other platforms and then transferred to a μSCC. Perhaps reflecting this limitation, μSCCs are not as prevalent as the μSFCs in the literature. Indeed, spheroid retrieval and transfer, combined with spheroid formation using other devices (conventional techniques), may make this approach relatively labo-
rious and expensive in terms of time and experimental cost. Nonetheless, in this section several μSCCs are described for a better understanding of these devices.

Munaz et al. fabricated a μSCC which had a wide main channel followed by parallel narrow microchannels of 80 μm width, 60 μm apart from each other [87]. Pre-formed spheroids were injected into the chip through the main channel and hydrodynamically directed to the narrow microchannels. The spheroids were trapped behind the narrow microchannels at a flow rate of 30 μl/min. The authors reported that flow rates above 60 μl/min led to spheroid disaggregation due to high shear rates (Fig. 8A). Ruppen and colleagues also designed a μSCC using the hydraulic-electric analogy so that flow resistance in bypass channels was more than trapping channels, facilitating efficient spheroid trapping (Fig. 8B) [8]. They reported that shear stress was negligible and did not affect the cells since there were negligible flow rates through the trapping channels where spheroids were trapped.

Kim et al. designed a μSCC that had eight microchambers for spheroid culturing [89]. Following loading, the spheroid entered a microchamber which resembled a vertical hollow cylinder. In the device, culture medium flow was generated by tilting the platform (Fig. 8C). Astolfi and co-workers designed a microfluidic chip to culture micro dissected tissues whose sizes were identical to cell spheroids (380 μm in diameter) [139]. Their design included a channel that contained several flat-bottomed microwells to trap the dissected tissues (Fig. 8D). Using simulation, they determined that high flow velocities caused these tissues to escape from the microwells, while the simultaneous shear stress was not high enough to have adverse effects on cells.

Some multi-organ-on-a-chip devices use liver spheroids as the suitable 3D culture for liver lobules [164,165]. In fact, the spheroids are introduced to the specific chambers and microchannels on the chip to be co-cultured with other organs such as pancreatic microtissues [165], skin tissue, intestine, and kidney cells [164]. The circulatory flow within the device exposes the spheroids to the metabolites and the materials secreted by other organ cells to mimic the in-vivo relations and functions of the organs.

3. Digital microfluidics in spheroid formation and culture

Digital microfluidics is a state-of-the-art technique used to handle picoliter to microliter liquid droplets [166,167] using different mechanisms such as the Marangoni effect [168], magnetic fields [169,170], optical actuation [171] or electrostatic forces [172–174]. Recently, much attention has been given to the application of this format of microfluidics in various biomedical applications including assisted reproductive technology and in-vitro fertilization [175]. It has been shown that the electrostatic fields used in digital microfluidic chips have negligible effects on cell viability, morphology [174,176] and gene expression [172], making such platforms suitable for both 2D [174,176,177] and 3D [172,173,178] cell cul-

![Fig. 9. Digital microfluidic chips for spheroid formation. (A) An HD-based digital μSCC. As shown in the figure, the platform design is complex and needs several materials such as Aluminum, Parylene-C, silicon oil, etc. as well as high resolution in fabrication (400 and 110 nm layers). A cell suspension is first introduced to the device inlet. Then, droplets are guided to the sites where the holes exist by the aid of capillary forces in order to form HDs and spheroids consequently. The humidified environment is provided by a buffer to prevent droplet evaporation for the long-term experiment. Reproduced with permission from [173]. (B) The process of droplet manipulation and anchoring in a digital microfluidic chip: (a) introducing the first droplet to the chip and guiding it to the hydrophilic site; (b) anchoring of the first droplet and introducing the second droplet to the first droplet; (c) the droplet moves across the hydrophilic site to facilitate the formation of a droplet similar to the hydrophilic pattern; (d) cross-linking leads to forming a solid microgel. Reproduced with permission from [178].]
ture. This microfluidic approach has facilitated more realistic and accurate experiments than those carried out in multiwell plates for toxicity screening [172,179], invasion assays [173] or cell polarization assays using spheroids [172]. In this method, liquid droplets are introduced into the chip to form sub-droplets (passive dispensing) and directed to HD holes (Fig. 9A) [180] or hydrophilic sites (Fig. 9B) [181,182] to be anchored. The sub-droplets take the shape of HD holes or hydrophilic patterns and are therefore outstanding at creating the desired droplet structures [178]. It is also possible to deliver reagents, drugs and any other liquid solutions to the anchored droplets on the chip without any pumps or valves [178].

Using on-chip crosslinking, Eydelnant and co-workers created cell-containing microgel structures in a digital microfluidic chip [178]. They reported spheroid formation from Madin Darby canine kidney (MDCK) cells in Geltrex and type I collagen microgel structures. They successfully probed on-chip spheroid polarization and 3D kidney epithelialization. Another digital microfluidic chip was designed for hepatotoxicity and albumin analysis as well as enzymatic activity assays on liver HepG2 spheroids [172]. The device performed droplet merging, mixing and splitting as well as dilution of solutions by digitally actuating the droplets on the chip. Another platform used HDs on the chip to form fibroblast and colon cancer cell spheroids for invasion assays [172]. Although digital microfluidics appears to have numerous advantageous, it nonetheless suffers from some deficiencies including liquid evaporation, lack of continuous perfusion, complex control and fabrication [167] as well as biofouling [179]. Some of these limitations have recently been addressed, but others remain to be eliminated.

4. Statistical comparison and a brief summary of μSFCs and μSCCs

Fig. 10 compares the standard deviation (SD) of spheroid diameter and formation time duration resulted from various spheroid formation methods. The formation time is considered as the time elapsed before cells make an aggregate in the culture as reported by the authors. As seen in the figure, the emulsion and the liquid overlay technique have the smallest and the largest SDs. Microrotational flow device had the shortest formation time due to the specific flow field in this condition which brings the cells close to each other, sufficient for developing cell–cell bonds in only 120 s. The well-based methods, although having larger SDs, facilitate spheroid formation in a shorter time than the emulsion technique. Occupying the smallest SD and formation time amongst the conventional methods, the HD method appears to be the best one which is comparable with the microfluidic methods.

There are more than 40 cell types used on various μSFCs and μSCCs so far, which are mostly the cell lines presented in Fig. 11. Primary cells such as lung adenocarcinoma [39] and rat hepatocyte cells [68] have been rarely used in single- [68] and co-culture [39,89] with other cell lines on μSFCs [39] and μSCCs [89].
majority of μSFCs and μSCCs conducted chemosensitivity tests using anticancer drugs such as duxorubicin [134], paclitaxel [134], cisplatin [7], 5-fluorouracil [10] while only two works recently presented photodynamic therapy on lung (A549 and MRC-5) [183] and breast cancer cell lines (T47D, MCF-7 and SUM159) [13] on μSFCs. For summarizing the information presented in Section 2, a table is added briefly show the microfluidic spheroid formation and culture types along with their advantages and disadvantages. Table 1 shows the types of spheroid formation and culture along with their advantages and disadvantages.

5. Design considerations and affecting parameters of μSFCs and μSCCs

Several parameters influence the microfluidic environment of a spheroid cell culture as illustrated in Fig. 12. The impacts and traits of these parameters should, therefore, be investigated properly prior to design and fabrication. In this section, some of these key parameters are discussed to provide helpful guidelines for efficient μSFC or μSCC development.

5.1. Microstructure design for spheroid formation and culture

Hemispherical or U-shaped microstructures are appropriate geometries for guiding uniformly sized spheroid formation. When a number of cells are trapped within a hemispherical geometry, the resultant microforce exerted on the cells by the round wall improves spheroid compaction since the force focuses on the center (Fig. 13A). Therefore, the bottoms of microwells and cell trapping microstructures in multwell culture plates and μSFCs are designed as concave shapes [6,39,40]. This hemispherical shape also helps with the single spheroid formation in each microwell [39,184]. Ruppen et al. suggested that after two days of culture, most of the concave-bottomed microwells contained one spheroid, while flat-bottomed microwells mostly contained two or three [39].

One method to create concave-bottomed microwells in PDMS microfluidic chips is to fabricate flat-bottomed microwells first and then pour PDMS prepolymer on the microwells. Next, the prepolymer should be raked out by a flat plate (Fig. 13B). The remaining prepolymer in the flat-bottomed microwells forms a concave geometry due to surface tension between the PDMS liquid prepolymer and the PDMS solid surface [40]. Xu and colleagues proposed a novel method for concave-bottom fabrication by controlling the temperature and pressure of trapped air bubbles [125]. They fabricated the desired number of microwavities on a poly (methyl methacrylate) plate. PDMS was poured onto the plate but it did not fill the microwavities due to its high viscosity. To achieve this viscosity, the PDMS was cooled to −20 °C. By increasing the temperature and reducing the pressure in an incubator, the air bubbles expanded and pushed up the adjacent PDMS layer to form the desired concave microwells (Fig. 13C). Ruppen et al. used a fabrication procedure, involving four different castings, to make concave-bottomed microwells [39]. First, flat-bottomed microwells were fabricated using stereolithography (3D printing). Following double casting with silanization, the flat-bottomed microwells were transferred to PDMS. Then, uncured PDMS droplets were deposited onto micropillars to form the desired hemispherical shapes. Last, the final mold was obtained by casting an epoxy onto the PDMS hemispherical substrate (Fig. 13D).

Pneumatics can also be used to generate temporary microwells or U-shaped microstructures in μSFCs. Ananda and co-workers generated membrane deformations by establishing pressure differences across a thin, flexible PDMS slab, thereby producing concave-bottomed microwells [185]. After spheroids were formed, the pressure difference was eliminated. As a result, the microwells completely disappeared and the spheroids were delivered at the outlet.

Permanent [118,121] and temporary pneumatically-actuated [119,120,128] U-shaped microstructures were fabricated on PDMS μSFCs inside microchannels. Unlike temporary U-shaped microstructures, the permanent ones were inflexible and consequently did not allow proper spheroid retrieval. Poly (ethylene glycol) diacrylate, which is a non-adherent hydrogel, was also used instead of PDMS to fabricate the U-shaped microstructures [118]. The design of spheroid culture microenvironments in μSCCs usually have the intended characteristics to facilitate the specific test on the spheroids. In a recent design, the authors investigated the effect of shear stress on chemoresistance and stemness of ovarian cancer spheroids in a μSCC [186]. The chip consisted of 4 mm wide and 250 μm height microchannels suitable for exposing the spheroids under controlled shear stresses of 0.02 and 0.002 dyn/cm². In a design by our group, spheroids were introduced to a μSCC for fusion of olfactory ensheathing cell spheroids [87]. The device contained parallel narrow channels after a wide chamber behind which spheroids trapped. The channels were close enough to enable the spheroids to make bonds between themselves while being under culture medium perfusion. For drug toxicity, various designs exist which differ in the mechanism of spheroid trapping and culture [8,89,139]. They share a mutual feature which is having spheroid culture sites far from direct exposure of spheroids from the flow of culture medium. The primary goal of the design in these devices is to avoid the spheroids from high shear stresses to remove any chances of cell death caused by it.

5.2. Culture medium delivery

The μSFCs and μSCCs are designed for various purposes such as drug cytotoxicity assessment [39], study the effect of shear stress on the spheroids [186], multi-organ culturing [164] and various other applications not developed yet. With this in mind, various flow conditions in the chip are needed that the designers should be familiar with them. A number of pumping methods are currently used within microfluidic chips for delivery of the culture medium [187]. These include: hydrostatic pressure differences [16], peristaltic micropumps [123,188], osmotic pressure differences [40,68,189], passive pumping [190] and syringe pumps [88,98].

In hydrostatic pumping, the pressure difference comes from the difference between the liquid levels of the inlet and outlet ports (Fig. 14A). To maintain a fixed flow rate in microchannels, one needs to add liquid to the inlet or remove it from the outlet reservoirs which otherwise the flow rate becomes transient [7,89,155]. In HD-based μSFCs where culture medium experiences high rates of evaporation and osmolality changes, the transient flow cannot perfectly control the medium solute concentrations. Recently, Ong et al. designed a hydrostatically-driven μSFC in which the flow rate maintained constant to address the problem of transient flow [191].

Peristaltic pumping is used within cell culturing microfluidic chips [187]. Mousavi et al. designed a thermoplastic polyurethane diaphragm adopted from a plug-and-play microvalve to facilitate peristaltic fluid pumping for cell culture applications (Fig. 14B) [188]. Peristaltic pumping is widely used for imposing cyclic shear stresses on endothelial cells [187] and also to better mimic the in-vivo blood flow for cardiac microtissue spheroids [154].

Osmotic pumping has been used in μSFCs for continuous medium supply to hepatocyte spheroids [40,68]. In osmotic pumping, adjusting the concentration of the driving agent (such as polyethylene glycol) enables flow controllability [40,68]. Fabrication is possible by simply gluing a cellulose membrane as a window to a PDMS chamber containing water [192] (Fig. 14C). Although it enables nanoliter flows, the flow rate decreases as the time goes...
The table summarizes the information discussed in Sections 2 and 3.

<table>
<thead>
<tr>
<th>Method of microfluidic spheroid formation</th>
<th>Sub-types of the methods</th>
<th>Effecting parameters</th>
</tr>
</thead>
</table>
| Emulsion technique [98–102,105,107] | Single (CS/O, Gel/O), double (CS/O/CM, CS/Gel/CM) and triple (CM/Gel/Gel/Oleic acid) emulsion | • Hydrogel type: The solid-like nature of the hydrogels might hinder spheroid formation
• Droplet stabilization: adding surfactants improves droplet stability and spheroid formation
• Flow rate: controls droplet generation frequency, droplet diameter and shell thickness
• Droplet anchorage: prevents droplet coalescence. The anchorage sites might be microwells or sinusoidal shapes |
| U-shaped microstructures [18,118,121,128] | Pneumatically actuated or permanent structures | • They can be used to trap both cells and cell containing droplets for spheroid formation.
• The structure size controls the spheroid diameter.
• The stagnation pressure in front of the structures facilitates spheroid formation.
• The configuration of their location with respect to each other on-chip is crucial for proper trapping the cells or droplets. |
| Microwell-based [6,39,88,96,125,134] | Sedimentation trapping or flow rate trapping | • Spheroid escape from the microwells can be predicted by CFD simulations and prevented.
• The flow rate and cell paths through spheroid culture microchannels should be adjusted and equalized using hydraulic-electric analogy.
• To facilitate HTS, the microchip should be designed such that it can be coupled with a CGG. |
| Other microfluidic methods [10,54,151–154] | Other methods used on-chip hanging droplets, permeable membranes, 3D acoustic tweezers, micropillars and microrotational flow for spheroid formation | • Porous membranes are used in two-layered chips for patterning the cells next to each other.
• The microrotational flow design requires a large volume flow rate of culture medium.
• The exposure time of cells within the on-chip 3D acoustic field is short, reducing cell death caused by sound waves.
• The micropillars are used to minimize the direct exposure of spheroids to the flow-induced shear stress and confine the transport phenomena to diffusion.
• On-chip hanging droplets have closed-loop steady and pulsatile culture medium flows for spheroid formation and culture. They still need adding culture medium to compensate for evaporation. |
| Microfluidic spheroid culture-only chips [8,87,89,139] | Bypass microchannels, parallel narrow microchannels, cylindrical microstructures and microwells with square sections | • The design of µSCCs have the intended characteristics to facilitate the specific test on the spheroids
• The hydraulic-electric analogy is used to direct the spheroids towards the culturing sites on-chip.
• Spheroids are used as the suitable 3D culture in some multi-organ-on-a-chip devices. |
| Digital microfluidics [173,178] | This method uses HDs or hydrophilic sites on the chip for spheroid formation | • This method does not need any valves or pumps.
• Droplet merging, mixing and splitting as well as dilution of solutions are possible on digital microfluidic chips.
• Biofouling, liquid evaporation and lack of continuous perfusion are its deficiencies. |

by due to the gradual reduction of the driving agent and requires constant refilling of the medium chamber and driving agent.

In µSFCs and µSCCs this type of flow condition provides time-variable supply of nutrients while the cell spheroids consume the nutrients and produce metabolic wastes constantly.

Passive pumping is also a practical method for microfluidic cell culture. As reported by Berthier and Beebe [190], the flow has two phases in this system. In the first phase, the flow is almost constant which is the most noticeable feature of this method. However, in the second phase, the flow velocity decreases in the microchannels until it ceases. It is possible to refill the inlet droplet manually to
maintain the flow; however, it would be laborious to maintain such perfusion for long-term culture (Fig. 14D).

Among the above-mentioned techniques, despite being costly and occupying a large space, syringe pumps are often the most practical and suitable pumping method. They operate automatically and are programmable, enabling steady state, continuous flow throughout the chip which is needed in most experiments in which tumor spheroids are under chemosensitivity studies [39,149,193].

5.3. Shear stress

One of the most crucial considerations in microwell and microchannel design within μSFCs and μSCCs is the shear stress to which cultured spheroids are exposed, since high shear stresses may cause spheroid disaggregation [40]. More subtly, Chang et al. reports that high shear stress on cancer cells modifies cell cycle, differentiation, and gene expression profile [195]. The maximum allowable shear stress on various mammalian cells, reported by different authors, falls into a large range from 0.001 [196] to 10 dyn/cm² [197]. This illustrates that acceptable shear stress differs for distinct cell lines.

In a recent work by Zuchowska et al., they investigated the effect of shear stress on spheroids formed on a μSFC. They reported that high shear stresses (maximum of 0.9 dyn/cm²) had adverse effects on forming cell aggregations and spheroid formation of A549 cell line while it did not affect MRC-5 cell spheroids [198]. According to
their observations, A549 spheroids were formed more compactly in deep microwells (500 µm height) due to lower shear stresses in comparison with shallower ones (350 µm height). It is likely that the difference between the morphology of the cells is responsible for this outcome. In another work in which ovarian cancer cell spheroids were put under various shear stresses in a µSCC the authors claimed that under in-vivo relevant shear stresses similar to the condition in peritoneum (<0.1 dyn/cm²), the cancer cell spheroids showed higher chemoresistance and also exhibited a higher tendency towards tumorigenesis. In addition, it was shown that the cancer stem cells in the spheroids induced stem cell markers only under shear stress and not in static culture [186]. It can be concluded that the shear stress is a critical parameter in designing µSFCs and µSCCs as it affects cellular function and phenotype [199].

Creating geometries that generate low velocities and stagnation regions near spheroids leads to low shear stresses on cells [121]. In designing a µ SCC, CFD analysis was performed to examine three different designs to optimize the geometry with respect to shear stress [89]. U-shaped microstructures and microwells also have the potential to be further refined with the aid of CFD analysis to limit shear stresses on cells [65]. For instance, the depth of microwells should be designed such that it is sufficient to protect spheroids from high shear stresses, particularly as they settle. Similarly, microwell diameters should be configured to ensure that spheroids do not exceed a specific size range [65]. Another way to protect multicellular spheroids from high shear stresses is to encapsulate them in hydrogel droplets [37]. In this way, the cells are not in direct contact with the main flow.
5.4. Cell loss

One drawback of most μSFCs is that cells may be lost during chip loading. This problem is more pronounced when the number of available cells is low, as is the case with primary cells and clinical samples. When cells are introduced at the inlet of the device, many of them do not trap within the chip. For instance, in most microwell-based μSFCs, cells that do not sediment within microwells are rinsed out with the flow of culture medium [6,17,40,95,125]. Therefore, many cells exit the device without taking part in the spheroid formation process. However, recent advances in μSFC design have resolved this issue [39,88,98,155,156,200]. Gradually decreasing the depth of microwells can dramatically reduce the number of cell lost [39,88,135]. Using porous membranes for cell trapping is also useful [155,156,200]. Emulsification-based μSFCs do not usually allow cell loss since cells are encapsulated inside either the aqueous phase [149] or the hydrogel droplets [36].

5.5. Spheroid diameter and cell density

Various parameters influence spheroid diameter in a single μSFC. These include: cell type (Fig. 15A); cell density (Fig. 15B) [122,125,134]; microwell or microstructure dimensions (Fig. 15C and D) [7,13,125]; duration of cell seeding [39,88,98,151]; and flow rate of the cell suspension [88,98,120].

In order to achieve desired diameters, one should take cell size into account. Patra et al. used different cell densities for HepG2 and COS-7 cell lines (10^2 and 10^3 cells/ml respectively), producing spheroid diameters of 200 μm and 80 μm, respectively [96]. This indicates that COS-7 cells are much larger than HepG2 cells. In another study, human glioma (U251) cells, human hepatocellular liver carcinoma (HepG2), and human breast adenocarcinoma (MCF-7) cells were used to form spheroids using the same cell density of 5 × 10^6 cells/ml. However, the resulting spheroid sizes were considerably different, as shown in Fig. 15A.

In a μSFC, cell density is a critical parameter responsible for spheroid size (Fig. 15B). In microwell-based μSFCs, low cell densities lead to the formation of several small spheroids per well [17]. In contrast, excessive cell densities produce large and fragile aggregates that do not resemble spheroids. These loose aggregates lack spherical shape [185] and may clog microchannels [17]. Chen et al. investigated the effects of cell suspension density in a μSFC [134]. The authors reported that cell densities below 1 × 10^6 cells/ml led to compact spheroids after 24 h, while a density of 2 × 10^6 cells/ml (for HCT116 cells) caused loose cell aggregates. Anada et al. reported similar results for cell densities above 4 × 10^6 cells/ml using HepG2 cells [185]. They also tried spheroid formation with a density of 8 × 10^6 cells/ml with the MG63 cell line and obtained compact spherical spheroids. These results show that the higher limit for cell density in a μSFC not only depends on the device design specifications but also on cell type.

Changing microwell dimensions is another way to generate different spheroid sizes from the same cell line (Fig. 15C & D) [7,125]. Patra et al. generated spheroids with diameters of 130 and 212 μm simply by adjusting the microwell dimensions [7]. The cross-sectional shapes of their microwells were squares with 200 × 200 μm and 300 × 300 μm dimensions (Fig. 15C). Another design by Kim et al. allowed precise control on spheroid diameter by tuning three parameters simultaneously: flow rate, cell density, and duration of cell seeding [88,135]. At equal cell seeding times, it is possible to increase cell density while lowering the flow rate and thereby obtain equivalent spheroid diameters. Sakai et al. reported that high culture medium flow rate increased the spheroid diameter by bringing the fresh medium and nutrients, and removing the waste products from the spheroid formation sites [201].

The addition of some factors can enhance the spheroid formation and its sphericity [202]. Increasing the fetal bovine serum (FBS) [163], reconstituted basement membrane (rBM) [48] or collagen [198] concentration in the culture media can enhance cell aggregation. Frey and co-workers investigated the effect of FBS concentration on spheroid formation of human colorectal carcinoma cells (HCT-116) in a μSFC. The authors reported that 0% concentration of FBS led to no spheroid formation while higher concentrations promoted larger diameter spheroids [163]. The spheroids produced from lung carcinoma cells (A-549 cell line) cultured on a μSFC were observed to improve sphericity and compaction only after the addition of collagen due to their low secretion of ECM proteins [198].

5.6. Methods of spheroid analysis

Evaluating and monitoring the spheroids before, during and after culturing and drug tests are crucial for interpreting the functionality of μSFCs and μSCCs. The monitoring methods are conducted off-chip or on-chip. Here, we briefly overview the off-chip techniques and then discuss the microfluidic designs to facilitate off-chip spheroid analysis. Finally, the recent advances in on-chip spheroid monitoring tools are elaborated.

5.6.1. Off-chip spheroid analysis methods and spheroid retrieval

Methods used conventionally for spheroid analysis can be categorized into two types. The first group needs spheroid retrieval which includes flow cytometry [7], scanning electron microscopy [36,203,204] and transmission electron microscopy [28]. The first group methods are typically conducted after the experiments and are solely endpoint assessment tools. The second group uses the supernatants collected from the outlet microchannels of the chip to evaluate the viability and metabolic activity of the cells after drug treatment [8,39,164] by conducting measurement of metabolites concentration, luminescence, and absorbance with the plate readers [39]. The supernatants contain caspase [8,39], albumin [89], urea [40], glucose and lactate content [164] which can be used to determine the cellular apoptosis and functional conditions in the culture microenvironment on the chip. Parallelization is an option which can be considered to boost the total throughput for supernatants analysis which should be considered in the chip design. Although these methods are simple and easy to use, they are not efficient for online monitoring because the supernatant is usually extracted during the experiment and stored for later measurements.

The capacity to retrieve spheroids from μSFCs represents a significant capability, allowing researchers to obtain additional information about cell viability, apoptosis and necrosis using flow cytometry [7], or to distinguish differentiation states in the case of stem cells [189]. Accordingly, proper mechanisms for the retrieval of the spheroids are essential. Spheroid retrieval is facilitated by the careful design of microchannels, microwells, and microstructures on μSFCs. After spheroids are formed, they can be retrieved by reversing [16,149] and/or increasing the flow rate [7,96,139], or by pneumatic actuation [119–121,128,185].

McMillan et al. [149] and Lee et al. [16] retrieved spheroids by reversing the flow direction in the device (Fig. 16A and B). The reversed flow exerts a higher pressure on spheroids in the opposite direction, forcing them to move back to the spheroid outlet. Several works including μSFCs [7,96] and μSCCs [65,139] retrieved spheroids by increasing the flow rate of the culture medium. They first simulated the flow field in square microwells to obtain the flow rate at which spheroids exit microwells due to hydrodynamic lift forces. Then, they applied this numerically obtained flow rate to their μSCF for spheroid retrieval. Xu et al. used two strategies for spheroid retrieval [125]. They either implemented high flow...
velocities (6 mm/sec) or inverted the device. As a result of the second technique, the spheroids could be retrieved with much lower fluid velocities (500 μm/sec). This method can reasonably reduce potential cell damage caused by high shear stress.

Recently, a number of pneumatics approaches has been utilized in μSFCs that allow spheroid retrieval. After spheroids are formed, and drug tests are completed, the pneumatically activated U-shaped barriers move downward, allowing spheroids to move towards the chip outlet [119,120,128] (Fig. 16C). In a two-layered μSFC fabricated by Anada et al., the pressure inside the bottom channel was reduced to deform the membrane [185]. Thus, concave-bottomed microwells were formed as a result of the pressure difference across a thin, flexible PDMS membrane (Fig. 16D). After spheroid formation, the pressure difference was set to zero such that concave-bottomed microwells reverted to a flat surface. Spheroids were then simply retrieved via pipetting.

In μSFCs or μSCCs lacking spheroid retrieval capacity, it is necessary to perform precise drug monitoring and screening on the chip. By turning the chip upside-down, Kang et al. developed a microfluidic platform that facilitated the formation and spontaneous differentiation of stem cell spheroids within microwells [189]. A flat area existed above each microwell on which spheroids fell. That area was pretreated with laminin and poly-1-lysine to facilitate on-chip neuronal differentiation. Thus, while this device lacked spheroid retrieval capacity, the need for spheroid retrieval was obviated by enabling on-chip differentiation and experimental monitoring.

5.6.2. On-chip spheroid analysis methods

Cellular viability and 3D morphology of the spheroids can be evaluated on-chip by using optical microscopy (Fig. 16A(b) & A(c)) [120,205], fluorescent microscopy (Fig. 16A(b) & A(c)) [8,105,120], the non-destructive spectroscopic imaging [206], confocal microscopy [52,105,173] and scanning electrochemical microscopy (SECM) (Fig. 7A) [151]. In on-chip live/dead fluorescent staining of the spheroids, the projected areas of green and red regions are quantified as live or dead portions of the spheroid following chemosensitivity tests. Non-fluorescent assessment of live/dead viability and sphericity of the spheroids [203] can be done using image processing software (e.g., Image) and MATLAB by on-chip measuring the spheroid diameter every day as it changes as a result of cell proliferation or cell death [134].
Fig. 16. Summary of various methods used for spheroid retrieval in μSFCs. (A) (a1 to a4) The time-lapse image sequence of spheroid retrieval by reversing the flow direction; (b and c) brightfield and fluorescent images of the retrieved spheroids proved the success of the retrieval process. Reproduced with permission from [149]. (B) Spheroid retrieval by pneumatic actuation of a PDMS membrane. (a) Cell loading to the microchip; (b) blocking the flow by pressurizing the PDMS membrane to trap cells; (c) spheroid formation; (d) releasing the pressure to free the spheroids for retrieval. Reproduced with permission from [120]. (C) Forming microwells using PDMS membrane by pneumatic actuation. The acrylic resin plate contains many holes and is placed above the air chamber in the bottom layer of the microchip. The air chamber is connected to a vacuum pump with a silicon tube to induce pressure difference across the membrane. Reproduced with permission from [185]. (D) The procedure for spheroid generation and retrieval in a μSFC. (a) Loading cells by a pipette; (b) orienting the device vertically for cell sedimentation; (c) spheroid formation; (d) hydrostatically-driven perfusion flow; (e) spheroid retrieval by reversing the flow direction in the chip. Reproduced with permission from [16].
Real-time monitoring of glucose consumption and lactate secretion of cell spheroids using electrode-based biosensors is implemented on an HD-based μSFC similar to the one shown in Fig. 7G [207]. The electrodes were fabricated by metal deposition on a glass layer in the chip and were functionalized with a hydrogel coating containing lactate or glucose oxidase on them. The hanging droplets were in contact with hydrogels from their ceiling which enabled in situ monitoring of lactate (Fig. 17A). The mentioned microfluidic HD concept was integrated into another work by Schmid et al. for electrical impedance spectroscopy [208]. Two pairs of platinum electrode inlays were deposited on a glass and placed in the HD culture similar to the previous design. The electrodes were placed lateral to the HD center in a way that each pair of them had various distances to it. Those placed farther were used for HD height measurements, and those placed closer to the center measured spheroid diameter size by quantifying the output current values for specific magnitudes of the applied voltage and signal. The measurements were based on the impedance changes of the HDs and spheroids due to their size and the resulting changes in the electrical field. Alexander et al. recently fabricated an on-chip platform for the measurement of extracellular acidification, oxygen uptake rate of cell spheroids, temperature and electrical impedance in a μSFC [209]. They pipetted the pre-formed spheroids into a 3D-printed cylindrical microwell in the chip which was confined with two membranes having 120 μm pores from the bottom and above (Fig. 17A). The thin layered deposited microelectrodes were embedded below the microwell to measure the chamber pH and the oxygen consumption of HepG2 spheroids (Fig. 17B). The device was coupled with a digital interface for user monitoring and automatic flow control of the chip. The non-invasive and label-free characteristics of these biosensors make them suitable tools for chemosensitivity monitoring and microenvironment control of cell spheroids in μSFCs and μSCCs.

6. Conclusions and future directions

In the present review, the application of microfluidics technology to the spheroid formation and culturing was discussed to illuminate its potential and benefits, as well as the challenges that remain relative to conventional cell culture methods. Various methods and techniques utilized in microfluidic spheroid formation and culture were described. These include microwells and U-shaped microstructures, the hydraulic-electric analogy, digital microfluidics and spheroid culture-only chips, as well as other creative designs related to μSFCs and μSCCs. In addition, the design considerations and affecting parameters relating to μSFCs and μSCCs were also discussed to provide a better understanding of the various parameters affecting on-chip spheroid formation and culture.

A common shortcoming among most of the existing μSFCs and μSCCs in the literature is their inability to facilitate high-throughput screening (HTS) in high-throughput spheroid for-
mation (HTSF) devices. This deficiency needs to be addressed in future works. HTSF needs a large number of microwells or microstructures to form numerous spheroids, while HTS requires the capacity to deliver different drug doses to each of those spheroids. Such drug delivery must occur within the microchannels on the chip, each having a specified concentration of the desired drug. Designing such a platform, despite being complex, would address the deficiencies of conventional HTS platforms such as multiwell or 384 hanging droplet (HD) plates. Methods and protocols for spheroid HTS have been devised using multiwell plates but unfortunately, retain the disadvantages of static cultures.

Despite advancements in the field of microfabrication, microfluidic platforms are intended to be used only once. In addition, since microfabrication processes are still considered expensive, using microfluidic drug screening platforms has not yet become common. Recent progress in 3D printing technology can be considered as a “killer application” in microfluidic cell culture platforms [210]. This technology enables rapid and inexpensive fabrication of various 3D microfluidic devices with complex integrated components. In addition, these microfluidic cell culture devices can become much more efficient when used for HTS. This would facilitate easy handling and manipulation especially when the procedures can be carried out using automated and robot-actuated devices in biological laboratories. Using robotics for the handling of the µSFCs and µSCCs not only minimizes the human-made errors but also makes the procedure easier for the future end-users.

In most µSFCs and µSCCs, the capacity to retrieve the cultured multicellular spheroids is limited. Typically, either there is no possibility for spheroid retrieval or it requires high flow rates that can adversely affect cell viability. Thus, efficient spheroid retrieval is an essential factor that merits increased design focus for implementation in µSFCs and µSCCs. Integration of µSFCs and µSCCs with imaging tools is another way to better analyze cultured spheroids. Embedding microlenses within the microfluidic chip for online monitoring can be helpful in platforms where spheroid retrieval is not possible. On-chip spheroid monitoring and sensing with biosensors and spectrometry tools also are interesting subjects. The electrode-based biosensors recently conducted on µSFCs and µSCCs have shown encouraging results regarding their capability in measuring and controlling the culture microenvironment species concentrations such as lactate, glucose, oxygen and also giving the pH, electrical impedance and temperature in situ. It is predicted that by using these biosensors and coupling them with the user-friendly interfaces, these platforms will have entered the realm of commercialization.

One of the missing components in on-chip spheroid culture is the administration of mechanical stress on the spheroids to better mimic the in-vivo microenvironments. By integrating the µSFCs and µSCCs with micromechanical actuators, it will be possible to conduct chemosensitivity tests and expose the spheroid cells to the in-vivo-like extracellular forces. Another future direction which can be seen for on-chip spheroids culturing is the application of bioengineered scaffolds in the µSFCs and µSCCs. The scaffolds can provide suitable surroundings for the spheroids to recapitulate the neighboring tissues.

Introducing the non-spherical spheroids to the µSCCs is feasible because in-vivo tumors are not spheres per se. Thus, various in-vivo relevant geometries of cellular aggregates can be bio-printed off-chip and then introduced to a µSFC. By these cellular structures, some other aspects of the spheroids features will be explicitly revealed when these non-spherical shapes are also vascula-

While such advances represent essential directions for development, µSFCs and µSCCs have clearly shown their potential in 3D culture and drug screening. These devices have been keenly studied for over a decade, yet have not reached maturity and still need to become more robust and easy to handle. Their ability to mimic in-vivo microenvironments must still be improved to more closely recreate complex phenomena, such as angiogenesis and vascularization in oncology research. Excitingly, µSFC and µSCC development is now accelerating, indicating that the impact of these platforms will continue to expand and advance across the biomedical research field.

Conflicts of interest
The authors declare no conflict of interest.

Acknowledgments
N.K. would like to thank Dr. Saeid Marzbanrad for reading the manuscript and making insightful comments. K.M. would like to thank Mr. Ali Kamali for his useful English editing of the manuscript and Ms. Tina Moshksayan for preparing some of the figures.

References

1146–1151.

1126–1134.

1074–1102.

110006–110102.

1126–1134.

1126–1134.

1114–1145.

1143–1148.

533–534.

103–104.

101006–101012.

101–104.

1536–1542.

12–16.

851–855.

857–860.

862–869.

1126–1134.

1574–1577.

1114–1145.

1220–1299.

1506–1515.

627–634.

20131124.

1143–1148.

1126–1134.

1126–1134.

1114–1145.

1574–1577.

20131124.

1114–1145.

1220–1299.

1506–1515.

627–634.

20131124.

1114–1145.

1220–1299.

1506–1515.

627–634.

1114–1145.

1220–1299.

1506–1515.

627–634.

1114–1145.

1220–1299.

1506–1515.

627–634.

1114–1145.

1220–1299.

1506–1515.

627–634.

1114–1145.

1220–1299.

1506–1515.

627–634.

1114–1145.
Navid Kashaninejad received his BSc and MSc degrees in Mechanical Engineering, Energy Conversion. In 2013, he obtained his PhD from the Division of Thermal and Fluid Engineering, Nanyang Technological University (NTU), Singapore. His PhD studies mainly focused on design and fabrication of microfluidic devices. His research interests include: design, fabrication and numerical simulation of microfluidic platforms for biological applications, and tissue engineering and regenerative medicine (e.g., fabrication of biomimetic scaffolds). He is currently a Research Fellow at Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Australia.

Majid Ebrahimi Warkiani is a Senior Lecturer in the School of Biomedical Engineering, University Technology Sydney (UTS), Sydney, Australia. He received his Ph.D. in Mechanical Engineering from Nanyang Technological University (NTU, Singapore), and undertook postdoctoral training at Massachusetts Institute of Technology (MIT, USA). He is also a member of Institute for Biomedical Materials & Devices (IBMD) and Center for Health Technologies (CHT) at UTS, a visiting scientist at the Garvan Institute for Biomedical Research as well as Translational Cancer Research Network (TCRN).

John G. Lock obtained his BSc (Honours 1st class) in Biochemistry and Cell Biology and his PhD in Cell Biology and from the University of Queensland, Australia. From 2006–2010, he was a Postdoctoral Research Fellow at Karolinska Institutet, Sweden. He was then an Assistant Professor and Systems Microscopy Team Leader at Karolinska Institutet from 2010 to 2015. He is now Group Leader in Systems Microscopy of Cancer at the Faculty of Medicine of University of New South Wales, Sydney, Australia.

Hajar Moghadas is a PhD student in Mechanical Engineering at Sharif University of Technology, Tehran, Iran. She is interested in biomedical, cell culture and drug delivery researches, microchip fabrication and nano-micro particle mechanics. In particular, she works in lung cancer-on-a-chip. She received her B.Sc. degree, in Mechanical Engineering from Yasouj University, Iran, in 2005 (Ranked first among all entrance students in 2001). She graduated from Sharif University, Iran, with an M.Sc in Mechanical Engineering (2009), with the award of top selected student.

Bahar Firoozabadi respectively obtained her BSc and MSc degrees in Mechanical Engineering from Sharif University of Technology and Tarbiat Modarres University, Tehran, Iran. In 1999, she received her PhD in Mechanical Engineering from Sharif University of Technology. She is now a Professor of Mechanical Engineering at Sharif University of Technology. Center of Excellence in Energy Conversion. Her research interests include: bio-fluid engineering, bubble and droplet formation and motion and 3D microfluidic cell culture devices.

Mohammad Saidi received his Master’s and Ph.D. degrees from Massachusetts Institute of Technology (MIT). He is a Professor of Mechanical Engineering at Sharif University of Technology, Center of Excellence in Energy Conversion. He also serves as a director of Sharif Bioengineering Lab which is a multidisciplinary group focusing on biomedical applications of microfluidics from 3D cell cultures to organ-on-chips with especial interest on cancer modeling and drug screening. His research interests include design and fabrication of microfluidic systems, experimental design and mathematical modeling of transport of nano and microscale aerosol particles, multiphase and reacting flow in porous media, micro and macro scale bioreactor.

Nam-Trung Nguyen is a professor and the director of Queens-land Micro- and Nanotechnology Centre, Griffith University, Australia. He received his Dipl-Ing, Dr.-Ing and Dr.-Ing habil degrees from the Chemnitz University of Technology, Germany, in 1993, 1997 and 2004, respectively. He was a postdoctoral research en- gineer at the Berkeley Sensor and Actuator Center, University of California, Berkeley, USA. From 1999–2013, he was a research fellow, assistant professor and associate pro- fessor at Nanyang Technological University, Singapore. Dr. Nguyen has published over 330 journal papers and several books on micro- fluidics and nanofluidics.

Biographies

Khashayar Moshksayan was born on May 1993. He graduated from Mechanical Engineering at Shiraz University, Iran, in 2015 and now is a MSc student at Shiraz University of Technology, Iran. His research interests include microfluidics, biofluid mechanics, lab-on-a-chip, organ-on-a-chip, microfabrication and compu-
tational fluid dynamics (CFD). He is skilled in numerical analysis and CFD modeling in Ansys software and programming in MATLAB. Khashayar is currently working on design and fabrication of a microfluidic chip for three dimensional culture of cancer cells.

